Skillnad mellan versioner av "1.5 Kontinuerliga och diskreta funktioner"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 5: | Rad 5: | ||
{{Not selected tab|[[1.5 Övningar till Kontinuerliga och diskreta funktioner|Övningar]]}} | {{Not selected tab|[[1.5 Övningar till Kontinuerliga och diskreta funktioner|Övningar]]}} | ||
{{Not selected tab|[[1.5 Fördjupning till Kontinuerliga och diskreta funktioner|Fördjupning]]}} | {{Not selected tab|[[1.5 Fördjupning till Kontinuerliga och diskreta funktioner|Fördjupning]]}} | ||
− | {{Not selected tab|[[2.1 | + | {{Not selected tab|[[2.1 Introduktion till derivata|Nästa demoavsnitt -->]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} |
Versionen från 6 juli 2015 kl. 13.58
<-- Förra demoavsnitt | Genomgång | Övningar | Fördjupning | Nästa demoavsnitt --> |
Lektion 8 Kontinuerliga & diskreta funktioner
Exempel 1 Diskret funktion
En torghandlare säljer ägg för \( \, 3 \) kr per styck.
Ställ upp och rita grafen till prisfunktionen som beskriver priset \( y \, \) i kr som en funktion av antalet \( n \, \) sålda ägg.
Lösning: \( {\color{Red} 1} \; \) ägg kostar \( {\color{Red} 1} \cdot 3 \;{\rm kr,} \) \( {\color{Red} 2} \; \) ägg kostar \( {\color{Red} 2} \cdot 3 \;{\rm kr,} \) \( {\color{Red} 3} \; \) ägg kostar \( {\color{Red} 3} \cdot 3 \;{\rm kr,} \) \( \qquad \cdots \) \( {\color{Red} n} \; \) ägg kostar \( {\color{Red} n} \cdot 3 \;{\rm kr} \) eller \( 3\;{\color{Red} n} \;{\rm kr.} \) Därför är prisfunktionen: \( y = 3\;{\color{Red} n} \, , \quad
{\rm där } \quad {\color{Red} n}\,= {\rm {\color{Red} {heltal}}\,.} \)
|
Fil:Diskret prisfunktion agg 50.jpg | Grafen till prisfunktionen visar priset \( y \, \) i kr (vertikal axel)
som en funktion av antalet \( {\color{Red} n} \, \) (horisontell axel).
prickar och inte med en genomdragen linje.
|
I matematiken betyder diskret åtskild, avgränsad eller separerad och är motsatsen till kontinuerlig. Heltalen bildar en diskret mängd därför att de är avgränsade från sina "grannar" på tallinjen med ett helsteg. Det finns inget heltal mellan \( \, 2 \, \) och \( \, 3 \, \) och inte heller mellan de andra heltalen. "Antal" är alltid heltal och därmed diskret. Därför är även "antal ägg" diskret: Det finns inga halva eller bråkdel ägg.
Exempel 2 Kontinuerlig funktion
En annan torghandlare säljer färskpressad granatäppeljuice för \( \, 30 \) kr per liter. Ställ upp och rita grafen till prisfunktionen som beskriver priset \( y \, \) kr för \( x \, \) liter. Lösning: Av samma anledning som i Exempel 1 är prisfunktionen här: \( y = 30\;{\color{Red} x} \, , \quad
{\rm där } \quad {\color{Red} x}\,= {\rm {\color{Red} {reellt\;tal}}\,.} \)
|
Fil:Kontinuerlig prisfunktion ris 50.jpg | Grafen till Funktionen \( y = 30\;{\color{Red} x} \) visar priset \( y \, \)
som en funktion av volymen \( {\color{Red} x} \) (i liter).
genomdragen linje och inte med prickar.
utan att lyfta pennan. |
I matematiken betyder kontinuerlig sammanhängande och är motsatsen till diskret. De rationella och reella talen är kontinuerliga mängder därför att mellan två sådana tal - hur nära varandra de än mår vara - finns alltid oändligt många andra tal.
Kontinuitet är en matematisk abstraktion som förekommer i talmängder eller andra matematiska objekt. Kontinuerliga funktioner är matematiska modeller som man i regel använder för att beskriva verkligheten. Men i vissa fall föredrar man diskreta modeller som studeras i en speciell disciplin av matematiken som heter Diskret matematik.
Ett exempel på problem som med fördel kan modelleras med diskreta funktioner är följande uppgift som den italienske matematikern Leonardo Pisano Fibonacci år 1202 formulerade i sin bok Liber abaci (Boken om räknekonsten). Fibonaccis problem handlar om kaniners fortplantning:
Exempel 3 Fibonaccis problem
- Ett kaninpar föder från den andra månaden av sin tillvaro ett nytt par varje månad.
- Samma gäller för de nya paren.
- Hur många par kommer det att finnas om ett år?
Följer vi problemets lydelse kan vi räkna fram kaninpopulationen åtminstone för de första 5 månaderna:
De två första månaderna finns det \( \, {\color{Red} 1} \, \) kaninpar. De föder sitt första barnpar först efter 2 månader dvs i månad nr 3, varför det finns \( \, {\color{Red} 2} \, \) kaninpar i månad 3. I månad 4 föder det första paret sitt andra barnpar, varför det finns \( \, {\color{Red} 3} \, \) par i månad 4. I månad 5 föder det första paret sitt tredje barnpar, men även deras första barnpar föder ett nytt par, eftersom det har gått 2 månader sedan deras födelse. Därför finns det \( \, {\color{Red} 5} \, \) par i månad 5 osv. \( \cdots \).
Praktiskt taget blir det allt svårare att hålla reda på kaninpopulationen när antalet månader växer. Därför modellerar vi problemet matematiskt:
Talföljden \( \, {\color{Red} 1}, \, {\color{Red} 1}, \, {\color{Red} 2}, \, {\color{Red} 3}, \, {\color{Red} 5}, \, \ldots \, \) visar antal kaninpar för varje månad. Talen kallas för fibonaccitalen.
Undersöker man denna talföljd noga kan man upptäcka följande mönster:
Mönster:
- Summan av två på varandra följande fibonaccital ger nästa fibonaccital.
Vi kan använda detta mönster som en algoritm, dvs ett tillvägagångssätt, för att beräkna fibonaccitalen. Ännu smartare är det att anlita digitala verktyg för att låta datorn göra beräkningsarbetet. Algoritmen kan användas för att programmera datorn. T.ex. lämpar sig kalkylprogrammet Excel utmärkt för en sådan beräkning:
Algoritm för fibonaccitalen i Excel
Beräkningen i Excel visar de \( \, 12 \, \) första fibonaccitalen:
|
Med denna värdetabell kan vi rita grafen
till höger som illustrerar fibonaccitalens snabba tillväxt. Den horisontella axeln visar antal månader och den vertikala antal kaninpar.
Fibonaccitalen bildar en diskret funktion därför att dess definitionsmängd \(-\) bestående av månaderna \( \, {\color{Red} 1}\)-\({\color{Red} {12}}\) \(-\) är heltal. |
Fil:Fibonacci 465p.jpg |
Som man ser ökar kaninpopulationen ganska fort, så att vi nu äntligen kan besvara den inledande frågan:
Det kommer att finnas \( \, 144 \, \) kaninpar om ett år.
Fibonaccis funktion
När vi beräknade fibonaccitalen konstaterade vi redan att de bildar en funktion. Vi beräknade värdetabellen och ritade även grafen till denna funktion. Men vad är dess formel? För att kunna formulera formeln inför vi följande beteckningar:
- \[ n \, = \, {\rm Antalet\;månader} \]
- \[ F(n)\, = \, {\rm Antalet\;kaninpar\;i\;månaden} \, n \]
De första två fibonaccitalen tar vi från värdetabellen ovan. Det är \( \, 1 \, \) och \( \, 1 \, \). Resten \(-\) Fibonaccis funktion som följer \(-\) är en översättning till matematiskt språk av det mönster vi upptäckte tidigare och lade till grund för beräkningsalgoritmen:
Så här brukar man skriva för att för en och samma funktion definiera olika uttryck i olika delar av dess definitionsmängd. Kanske blir det enklare att förstå definitionen ovan om vi skriver den på följande förenklat sätt:
- \[\begin{array}{rcl} F(1) & = & 1 \\ F(2) & = & 1 \\ F(n) & = & F(n-1) \; + \; F(n-2) \qquad \mbox{om} \quad n = 3,\,4,\,5,\,\cdots \end{array}\]
De första raderna i definitionen ovan säger att de första två fibonaccitalen är \( \, 1 \, \) och \( \, 1 \). Den andra raden säger att det \( \, n\)-te fibonaccitalet är summan av de två föregående, vilket är mönstret vi upptäckte tidigare.
Egenskaper
Egenskapen att vara en diskret hade vi redan konstaterat för Fibonaccis funktion. Detta pga dess definitionsmängd var heltal: antalet kaninpar.
En annan intressant egenskap är att Fibonaccis funktion är rekursiv, vilket betyder att den i sin definition anropar sig själv, genom att ett värde beräknas med hjälp av föregående värden. För att se detta titta på raden i definitionen:
- \[ F(n) \; = \; F(n-1) \; + \; F(n-2) \]
I en vanlig funktion står \( F(n) \, \) till vänster om likhetstecknet och den oberoende variabeln \( n \, \) till höger. Men här står \( \, F(n) \, \) på båda sidor likhetstecknet, fast för olika månader (= argument). För att beräkna ett fibonaccital måste man känna till de två föregående. Men eftersom vi har de två första \( F(1) = 1 \, \) och \( F(2) = 1 \, \), s.k. startvärden, kan vi beräkna alla andra successivt dvs rekursivt utgående från dessa startvärden. Att \( F(n) \, \) anropas på båda sidor likhetstecknet är just den rekursiva egenskapen. Därför kallas Fibonaccis formel även Fibonaccis rekursionsformel.
Fibonaccis funktion har många intressanta kopplingar till andra delar inom matematiken. En av dem är sambandet mellan fibonaccitalen och det s.k. gyllene snittet se övning 6. En annan är följande vacker formel som upptäcktes först 1718 \(-\) mer än 500 år senare än själva fibonaccitalen \(-\) och som ger oss möjligheten att direkt beräkna vilket fibonaccital som helst utan att känna till något föregående fibonaccital:
- \[ F(n) = {1\over\sqrt{5}}\,\left({1+\sqrt{5}\over 2}\right)^n\,-\;{1\over\sqrt{5}}\,\left({1-\sqrt{5}\over 2}\right)^n\; , \qquad n \;\mbox{heltal } \geq 1 \]
Till skillnad från Fibonaccis rekursionsformel kallas denna formel för explicit. I övning 11 får du till uppgift att bevisa den, vilket görs genom att visa att den uppfyller rekursionsformeln. Den är i själva verket lösningen till rekursionsformeln när denna uppfattas och behandlas som en differensekvation \(-\) något som studeras inom Diskret matematik.
Internetlänkar
http://www.youtube.com/watch?v=SKRjz2aTqCY
http://www.youtube.com/watch?v=cvnG0YWPLjQ
http://www.sigma8.se/dokument/TabyFriskola_Amnesrapport_OK_2012.pdf
http://www03.edu.fi/svenska/oppimateriaalit/arkimatematiikkaa/fibona.html
http://paranormal.se/topic/det_gyllene_snittet.html
http://www.math.fau.edu/MathCircle_at_FAU/MC130713Problems.pdf
Copyright © 2011-2015 Math Online Sweden AB. All Rights Reserved.