Skillnad mellan versioner av "Potenser"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 48: | Rad 48: | ||
− | == Potenslagarna == | + | == <b><span style="color:#931136">Potenslagarna</span></b> == |
+ | <div class="tolv"> <!-- tolv3 --> | ||
− | Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> x\, </math> och <math> y\, </math> vilka rationella tal som helst och <math> m,\,n </math> heltal (<math> n\neq 0 </math>). Potenslagarna gäller även för exponenter som är negativa eller rationella (bråktal), även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter: | + | Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> x\, </math> och <math> y\, </math> vilka rationella tal som helst och <math> m,\,n </math> heltal (<math> n\neq 0 </math>). |
+ | |||
+ | Potenslagarna gäller även för exponenter som är negativa eller rationella (bråktal), även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter: | ||
+ | </div> <!-- tolv3 --> | ||
[[Image: Potenslagarna_70a.jpg]] | [[Image: Potenslagarna_70a.jpg]] | ||
− | == Bevis av några potenslagar == | + | == <b><span style="color:#931136">Bevis av några potenslagar</span></b> == |
+ | <div class="tolv"> <!-- tolv4 --> | ||
'''Påstående (Produkt av potenser med samma bas)''': | '''Påstående (Produkt av potenser med samma bas)''': | ||
Rad 91: | Rad 96: | ||
Vi får påståendet, fast baklänges. | Vi får påståendet, fast baklänges. | ||
+ | </div> <!-- tolv4 --> | ||
− | '''Exempel''' | + | <div class="exempel12"> <!-- exempel2 --> |
+ | '''Exempel:''' | ||
::::<math> a^{-1} = {1 \over a^1} = {1 \over a} </math> | ::::<math> a^{-1} = {1 \over a^1} = {1 \over a} </math> | ||
Rad 99: | Rad 106: | ||
::::<math> a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} </math> | ::::<math> a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} </math> | ||
+ | </div> <!-- exempel2 --> | ||
+ | |||
+ | <div class="exempel12"> <!-- exempel3 --> | ||
Följande exempel illustrerar övergången från positiva till negativa exponenter med nollte potensen däremellan: | Följande exempel illustrerar övergången från positiva till negativa exponenter med nollte potensen däremellan: | ||
[[Image: Potens_Ex_60.jpg]] | [[Image: Potens_Ex_60.jpg]] | ||
− | ---- | + | </div> <!-- exempel3 --> |
+ | |||
+ | <div class="tolv"> <!-- tolv5 --> | ||
'''Påstående (Rationell exponent)''': | '''Påstående (Rationell exponent)''': | ||
Rad 125: | Rad 137: | ||
Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal <math> m\, </math> och <math> n\neq 0 </math>. | Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal <math> m\, </math> och <math> n\neq 0 </math>. | ||
+ | </div> <!-- tolv5 --> | ||
− | == Potensekvationer == | + | == <b><span style="color:#931136">Potensekvationer</span></b> == |
+ | <div class="tolv"> <!-- tolv6 --> | ||
Anta i fortsättningen att <math> x\, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> . | Anta i fortsättningen att <math> x\, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> . | ||
Rad 151: | Rad 165: | ||
Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rötter även kan uppfattas och skrivas som <strong><span style="color:red">potenser med rationella exponenter</span></strong>, se avsnittet ovan. | Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rötter även kan uppfattas och skrivas som <strong><span style="color:red">potenser med rationella exponenter</span></strong>, se avsnittet ovan. | ||
+ | </div> <!-- tolv6 --> | ||
− | == Blandade exempel == | + | == <b><span style="color:#931136">Blandade exempel</span></b> == |
[[Image: Potens_Ex_1.jpg]] | [[Image: Potens_Ex_1.jpg]] | ||
Rad 165: | Rad 180: | ||
− | == Internetlänkar == | + | == <b><span style="color:#931136">Internetlänkar</span></b> == |
http://www.youtube.com/watch?v=iYgG4LUqXks | http://www.youtube.com/watch?v=iYgG4LUqXks |
Versionen från 18 maj 2015 kl. 21.32
<-- Tillbaka till Polynom | Genomgång | Övningar |
Potensbegreppet
Ett uttryck av formen \( a^x\, \) läses "a upphöjt till x" och kallas potens. \( a\, \) heter basen och \( x\, \) exponenten.
Om exponenten \( x\, \) är ett positivt heltal och basen \( a\, \) ett tal \( \neq 0 \) kan potensen \( a^x\, \) definieras som en förkortning för upprepad multiplikation av \( a\, \) med sig själv \( x\, \) gånger:
- \[ a^x = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x\;\times} \]
Exempel:
- \[ a^2 = a \cdot a \]
- \[ a^3 = a \cdot a \cdot a \]
Om vi nu multiplicerar dessa två potenser med varandra och använder potensens definition, får vi:
- \[ a^2 \cdot a^3 \; = \; \underbrace{a \cdot a}_{2} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{5} \; = \; a^5\]
Vi kan sammanfatta till:
- \[ a^2 \cdot a^3 \; = \; a^{2+3} = \; a^5\]
Detta är ett exempel på en allmän lag, den första potenslagen:
Det finns flera sådana:
Potenslagarna
Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( x\, \) och \( y\, \) vilka rationella tal som helst och \( m,\,n \) heltal (\( n\neq 0 \)).
Potenslagarna gäller även för exponenter som är negativa eller rationella (bråktal), även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter:
Bevis av några potenslagar
Påstående (Produkt av potenser med samma bas):
- \[ a^x \cdot a^y \; = \; a^{x+y} \]
Bevis:
Påståendet kan bevisas genom att använda potensens definition:
- \[ a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} \]
Påstående (Nollte potens):
- \[ a^0 \; = \; 1 \]
Bevis:
Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:
- \[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]
Påstående (Negativ exponent):
- \[ a^{-x} = {1 \over a^x} \]
Bevis:
Påståendet kan bevisas genom att använda den ovan bevisade lagen för nollte potensen (bakifrån) samt lagen om division av potenser med samma bas:
- \[ {1 \over a^x} \; = \; {a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \]
Vi får påståendet, fast baklänges.
Exempel:
- \[ a^{-1} = {1 \over a^1} = {1 \over a} \]
- \[ a^{-2} = {1 \over a^2} = {1 \over a \cdot a} \]
- \[ a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} \]
Följande exempel illustrerar övergången från positiva till negativa exponenter med nollte potensen däremellan:
Påstående (Rationell exponent):
- \( a^{m \over n} \; = \; \sqrt[n]{a^m} \)
Bevisidé:
Vi tar specialfallet \( m=1 \) och \( n=3 \), multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:
- \( a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)
Definitionen för 3:e roten ur \( a \) är:
- \(\sqrt[3]{a} \; = {\color{White} x} \) Tal som 3 gånger multiplicerat med sig själv ger a.
Men enligt ovan är det tal som 3 gånger med sig själv ger \( a \), just \( a \)\(^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur \( a \):
- \( a^{1 \over 3} \; = \; \sqrt[3]{a} \)
Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal \( m\, \) och \( n\neq 0 \).
Potensekvationer
Anta i fortsättningen att \( x\, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .
- Funktioner av typ \( y = x^3\, \) kallas potensfunktioner, generellt \( {\color{White} x} y = c \cdot x^b\, \).
- Ekvationer av typ \( x^3\, = 8 \) kallas potensekvationer, generellt \( {\color{White} x} x^b\, = c \).
I potensfunktioner och -ekvationer förekommer x i basen. Potensekvationer löses genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:
- \[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]
Alternativt (med bråktal som exponent):
- \[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]
Det alternativa sättet att lösa ekvationen \( x^3 = 8\, \) visar att rötter även kan uppfattas och skrivas som potenser med rationella exponenter, se avsnittet ovan.
Blandade exempel
Internetlänkar
http://www.youtube.com/watch?v=iYgG4LUqXks
http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html
http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html
http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar
Copyright © 2010-2015 Math Online Sweden AB. All Rights Reserved.