Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 21: Rad 21:
  
 
<div class="exempel12"> <!-- exempel12 -->
 
<div class="exempel12"> <!-- exempel12 -->
Exempel:
+
'''Exempel:'''
 +
 
 
::::<math> a^2 = a \cdot a </math>
 
::::<math> a^2 = a \cdot a </math>
  

Versionen från 18 maj 2015 kl. 21.21

       <-- Tillbaka till Polynom          Genomgång          Övningar      


Potensbegreppet

Ett uttryck av formen \( a^x\, \) läses "a upphöjt till x" och kallas potens. \( a\, \) heter basen och \( x\, \) exponenten.

Om exponenten \( x\, \) är ett positivt heltal och basen \( a\, \) ett tal \( \neq 0 \) kan potensen \( a^x\, \) definieras som en förkortning för upprepad multiplikation av \( a\, \) med sig själv \( x\, \) gånger:

\[ a^x = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x\;\times} \]

Exempel:

\[ a^2 = a \cdot a \]
\[ a^3 = a \cdot a \cdot a \]

Om vi nu multiplicerar dessa två potenser med varandra och använder potensens definition, får vi:

\[ a^2 \cdot a^3 \; = \; \underbrace{a \cdot a}_{2} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{5} \; = \; a^5\]

Vi kan sammanfatta till:

\[ a^2 \cdot a^3 \; = \; a^{2+3} = \; a^5\]


Detta är ett exempel på en allmän lag, den första potenslagen:

\( a^x \cdot a^y \; = \; a^{x+y} \)

Det finns flera sådana:


Potenslagarna

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( x\, \) och \( y\, \) vilka rationella tal som helst och \( m,\,n \) heltal (\( n\neq 0 \)). Potenslagarna gäller även för exponenter som är negativa eller rationella (bråktal), även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter:

Fil:Potenslagarna 70a.jpg

Bevis av några potenslagar

Påstående (Produkt av potenser med samma bas):

\[ a^x \cdot a^y \; = \; a^{x+y} \]

Bevis:

Påståendet kan bevisas genom att använda potensens definition:

\[ a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} \]

Påstående (Nollte potens):

\[ a^0 \; = \; 1 \]

Bevis:

Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:

\[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]

Påstående (Negativ exponent):

\[ a^{-x} = {1 \over a^x} \]

Bevis:

Påståendet kan bevisas genom att använda den ovan bevisade lagen för nollte potensen (bakifrån) samt lagen om division av potenser med samma bas:

\[ {1 \over a^x} \; = \; {a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \]

Vi får påståendet, fast baklänges.

Exempel:

\[ a^{-1} = {1 \over a^1} = {1 \over a} \]
\[ a^{-2} = {1 \over a^2} = {1 \over a \cdot a} \]
\[ a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} \]

Följande exempel illustrerar övergången från positiva till negativa exponenter med nollte potensen däremellan:

Fil:Potens Ex 60.jpg


Påstående (Rationell exponent):

\( a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Bevisidé:

Vi tar specialfallet \( m=1 \) och \( n=3 \), multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:

\( a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Definitionen för 3:e roten ur \( a \) är:

\(\sqrt[3]{a} \; = {\color{White} x} \) Tal som 3 gånger multiplicerat med sig själv ger a.

Men enligt ovan är det tal som 3 gånger med sig själv ger \( a \), just \( a \)\(^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur \( a \):

\( a^{1 \over 3} \; = \; \sqrt[3]{a} \)

Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal \( m\, \) och \( n\neq 0 \).


Potensekvationer

Anta i fortsättningen att \( x\, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas potensfunktioner, generellt \( {\color{White} x} y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas potensekvationer, generellt \( {\color{White} x} x^b\, = c \).

I potensfunktioner och -ekvationer förekommer x i basen. Potensekvationer löses genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt (med bråktal som exponent):

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

Det alternativa sättet att lösa ekvationen \( x^3 = 8\, \) visar att rötter även kan uppfattas och skrivas som potenser med rationella exponenter, se avsnittet ovan.


Blandade exempel

Potens Ex 1.jpg


Potens Ex 2.jpg


Potens Ex 3.jpg


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2015 Math Online Sweden AB. All Rights Reserved.