Skillnad mellan versioner av "1.3 Lösning 6b"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
Rad 9: Rad 9:
 
       \end{align}</math>
 
       \end{align}</math>
  
Normalformen ger Vietas formler (se Teori 3 Samband mellan koefficienter och nollställen):
+
Normalformen ger Vietas formler:
  
 
<math> \begin{align} x_1  +  x_2 & = -1  \\
 
<math> \begin{align} x_1  +  x_2 & = -1  \\

Nuvarande version från 20 februari 2011 kl. 19.50

För att faktorisera polynomet \( 3\,x^2 + 3\,x - 6 \) beräknar vi dess nollställen\[ 3\,x^2 + 3\,x - 6 = 0 \]

För att kunna använda Vietas formler måste ekvationen skrivas om till normalform\[\begin{align} 3\,x^2 + 3\,x - 6 & = 0 \qquad & | \; / \, 3 \\ x^2 + x - 2 & = 0 \\ \end{align}\]

Normalformen ger Vietas formler\[ \begin{align} x_1 + x_2 & = -1 \\ x_1 \cdot x_2 & = -2 \end{align}\]

Man hittar lösningarna \( x_1 = -2\,\) och \( x_2 = 1\,\) eftersom

\( \begin{align} -2 + 1 & = -1 \\ (-2)\cdot 1 & = -2 \end{align}\)

Därför har normalformen \( x^2 + x - 2\, \) följande faktorform\[ (x+2) \cdot (x-1) \].

Det ursprungliga polynomet \(3\,x^2 + 3\,x - 6\) har faktorformen\[ 3 \cdot (x+2) \cdot (x-1) \].

Kontroll\[ 3 \cdot (x+2) \cdot (x-1) = 3 \cdot (x^2 - x + 2\,x - 2) = 3 \cdot (x^2 + x - 2) = \]

\[ = 3\,x^2 + 3\,x - 6 \]