Skillnad mellan versioner av "1.1 Lösning 10"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 17: Rad 17:
 
     \end{align}</math>
 
     \end{align}</math>
  
Sätter vi tillbaka <math> t_1 = 17\, </math> i substitutionen som vi gjorde i början: <math> 17 = {1 \over \sqrt{x_1}} </math> och kvadrerar båda sidor får vi lösningen <math> x = 1\, </math>.
+
Sätter vi tillbaka <math> t_1 = 17\, </math> i substitutionen som vi gjorde i början får vi:
 +
 
 +
:::<math>\begin{align} 17 & = {1 \over \sqrt{x_1}} &&  \qquad | \; (\;\;\;)^2        \\
 +
                    289& = {1 \over x_1}          &&  \qquad | \; \cdot x_1 \;/\;289 \\
 +
                    x_1& = {1 \over 289}                      \\
 +
      \end{align}</math>
  
 
Prövning:
 
Prövning:

Versionen från 30 januari 2011 kl. 23.21

I ekvationen

\( {1 \over x} = 306 - {1 \over \sqrt{x}} \)

inför vi den nya variabeln \( t = {1 \over \sqrt{x}} \) (substitution) vilket ger upphov till \( t^2 = {1 \over x} \) när det hela kvadreras.

Ersätter vi i ekvationen ovan \( 1 \over \sqrt{x} \) med \( t\, \) och \( 1 \over x \) med \( t^2\, \) får vi\[\begin{align} t^2 & = 306 - t & | \, - 306 + t \\ t^2 + t - 306 & = 0 \\ t_{1,2} & = -{1 \over 2} \pm \sqrt{{1 \over 4} + 306} \\ t_{1,2} & = -{1 \over 2} \pm \sqrt{{1 \over 4} + {1224 \over 4}} \\ t_{1,2} & = -{1 \over 2} \pm \sqrt{1225 \over 4} \\ t_{1,2} & = -{1 \over 2} \pm {35 \over 2} \\ t_1 & = {34 \over 2} = 17 \\ t_2 & = -{36 \over 2} = - 18 \\ \end{align}\]

Sätter vi tillbaka \( t_1 = 17\, \) i substitutionen som vi gjorde i början får vi:

\[\begin{align} 17 & = {1 \over \sqrt{x_1}} && \qquad | \; (\;\;\;)^2 \\ 289& = {1 \over x_1} && \qquad | \; \cdot x_1 \;/\;289 \\ x_1& = {1 \over 289} \\ \end{align}\]

Prövning:

VL\[ 2\,\sqrt{1} - 1 = 2 - 1 = 1 \]

HL\[ \displaystyle 1 \]

VL = HL \( \Rightarrow\, x = 1 \) är rotekvationens lösning.