Skillnad mellan versioner av "3.5 Lösning 7c"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 17: | Rad 17: | ||
För <math> \, x = 25 \, </math> ger andraderivatans tecken<span style="color:black">:</span> | För <math> \, x = 25 \, </math> ger andraderivatans tecken<span style="color:black">:</span> | ||
− | <math> | + | <math> I''(25) = - \, 160 \, < \, 0 \quad \Longrightarrow \quad V(x) \, </math> har ett lokalt maximum för <math> \, x = 25 \, </math>. |
− | För <math> \, | + | För <math> \, x = 25 \, </math> blir SJ:s intäkt <math> \, I(x) \, </math> maximal. |
Versionen från 3 februari 2015 kl. 12.14
Vi deriverar målfunktionen\[ I(x) = (20\,000 - 80\,x) \cdot (200 + x) = 4\,000\,000 + 20\,000\,x - 16\,000\,x - 80\,x^2 = -80\,x^2 + 4\,000\,x + 4\,000\,000 \]
\( I'(x) = -160\,x + 4\,000 \)
\( I''(x) \, = -160 \)
Derivatans nollställen\[\begin{array}{rcrcl} I'(x) & = & -160\,x + 4\,000 & = & 0 \\ & & 4\,000 & = & 160\,x \\ & & {4\,000 \over 160} & = & x \\ & & x & = & 25 \end{array}\]
För \( \, x = 25 \, \) ger andraderivatans tecken:
\( I''(25) = - \, 160 \, < \, 0 \quad \Longrightarrow \quad V(x) \, \) har ett lokalt maximum för \( \, x = 25 \, \).
För \( \, x = 25 \, \) blir SJ:s intäkt \( \, I(x) \, \) maximal.