Skillnad mellan versioner av "3.5 Lösning 6d"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
Vi deriverar målfunktionen: | Vi deriverar målfunktionen: | ||
− | ::<math> V(x) \, = \, x \cdot (10 \, - \, 2\,x)^2 \, </math> | + | ::<math> V(x) \, = \, x \cdot (10 \, - \, 2\,x)^2 \, = \, x \cdot (100 \, - \, 40\,x \, + \, 4\,x^2) \, = \, 100\,x \, - \, 40\,x^2 \, + \, 4\,x^3 \, </math> |
+++ | +++ | ||
::<math> A'(x) \, = \, 9 \, - \, 4\,x \, </math> | ::<math> A'(x) \, = \, 9 \, - \, 4\,x \, </math> |
Versionen från 2 februari 2015 kl. 20.16
Vi deriverar målfunktionen:
- \[ V(x) \, = \, x \cdot (10 \, - \, 2\,x)^2 \, = \, x \cdot (100 \, - \, 40\,x \, + \, 4\,x^2) \, = \, 100\,x \, - \, 40\,x^2 \, + \, 4\,x^3 \, \]
+++
- \[ A'(x) \, = \, 9 \, - \, 4\,x \, \]
- \[ A''(x) \, = \, -\,4 \]
Derivatans nollställe:
- \[\begin{array}{rcrcl} A'(x) & = & 9 \, - \, 4\,x & = & 0 \\ & & 9 & = & 4\,x \\ & & x & = & {9 \over 4 } \, = \, 2,25 \end{array}\]
Andraderivatans tecken för \( \, x = 2,25 \, \):
\( A''(2,25) = -4 \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 2,25 \, \).
\( x = 2,25 \, \) är rektangelns ena sida. Den andra sidan är:
- \[ 9 \, - \, 2\,x \, = \, 9 \, - \, 2 \cdot 2,25 \, = \, 9 \, - \, 4,5 \, = \,4,5 \]
För \( \, x = 2,25 \, \) blir stängselns area maximal.