Skillnad mellan versioner av "3.5 Lösning 5c"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
Rad 22: Rad 22:
 
::<math> 9 \, - \, 2\,x \, = \, 9 \, - \, 2 \cdot 2,25 \, = \, 9 \, - \, 4,5 \, = \,4,5 </math>
 
::<math> 9 \, - \, 2\,x \, = \, 9 \, - \, 2 \cdot 2,25 \, = \, 9 \, - \, 4,5 \, = \,4,5 </math>
  
För <math> \, x = 2,25 \, </math> blir stägselns area maximal.
+
För <math> \, x = 2,25 \, </math> blir stängselns area maximal.

Nuvarande version från 1 februari 2015 kl. 23.02

Vi deriverar målfunktionen:

\[ A\,(x) \, = \, x \cdot (9 \, - \, 2\,x) \, = \, 9\,x - \, 2\,x^2 \]
\[ A'(x) \, = \, 9 \, - \, 4\,x \, \]
\[ A''(x) \, = \, -\,4 \]

Derivatans nollställe:

\[\begin{array}{rcrcl} A'(x) & = & 9 \, - \, 4\,x & = & 0 \\ & & 9 & = & 4\,x \\ & & x & = & {9 \over 4 } \, = \, 2,25 \end{array}\]

Andraderivatans tecken för \( \, x = 2,25 \, \):

\( A''(2,25) = -4 \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 2,25 \, \).

\( x = 2,25 \, \) är rektangelns ena sida. Den andra sidan är:

\[ 9 \, - \, 2\,x \, = \, 9 \, - \, 2 \cdot 2,25 \, = \, 9 \, - \, 4,5 \, = \,4,5 \]

För \( \, x = 2,25 \, \) blir stängselns area maximal.