Skillnad mellan versioner av "3.5 Lösning 3c"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 3: | Rad 3: | ||
::<math> O\,(x) \, = \, 2\,x \, + \, {50 \over x} \, = \, 2\,x \, + \, 50\cdot {1 \over x} </math> | ::<math> O\,(x) \, = \, 2\,x \, + \, {50 \over x} \, = \, 2\,x \, + \, 50\cdot {1 \over x} </math> | ||
− | ::<math> O'(x) \, = \, 2 \, - \, {50 \over x^2} | + | ::<math> O'(x) \, = \, 2 \, - \, {50 \over x^2} \, = \, 2 \, - \, 50 \cdot x^{-2} </math> |
− | + | ||
− | + | ||
::<math> O''(x) \, = \, -(-2)\cdot 50\,x^{-3} </math> | ::<math> O''(x) \, = \, -(-2)\cdot 50\,x^{-3} </math> |
Versionen från 1 februari 2015 kl. 15.15
Vi deriverar målfunktionen:
- \[ O\,(x) \, = \, 2\,x \, + \, {50 \over x} \, = \, 2\,x \, + \, 50\cdot {1 \over x} \]
- \[ O'(x) \, = \, 2 \, - \, {50 \over x^2} \, = \, 2 \, - \, 50 \cdot x^{-2} \]
- \[ O''(x) \, = \, -(-2)\cdot 50\,x^{-3} \]
- \[ O''(x) \, = \, {100 \over x^3} \]
Derivatans nollställe:
- \[\begin{array}{rcrcl} A'(x) & = & -\,2\,x \, + \, 6 & = & 0 \\ & & 6 & = & 2\,x \\ & & x & = & 3 \end{array}\]
Andraderivatans tecken för \( \, x = 3 \, \):
\( A''(3) = \displaystyle -2 \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 3 \, \).
\( x = 3 \, \) är rektangelns ens sida. För att få den andra sidan \( \, y \, \) sätter vi in \( \, x = 3 \, \) i bivillkoret från a):
- \[ y \ = \, 6 \, - \, x \ = \, 6 \, - \, 3 \ = \, 3 \]
För \( \, x = 3 \, \) och \( \, y = 3 \, \) blir rektangelns area maximal.
Rektangeln med maximal area är en kvadrat med sidan \( \, 3 \, \).