Skillnad mellan versioner av "3.5 Lösning 1c"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 11: | Rad 11: | ||
::<math>\begin{array}{rcrcl} A'(x) & = & -\,{12 \over 5}\,x \, + \, 4 & = & 0 \\ | ::<math>\begin{array}{rcrcl} A'(x) & = & -\,{12 \over 5}\,x \, + \, 4 & = & 0 \\ | ||
& & 4 & = & {12 \over 5}\,x \\ | & & 4 & = & {12 \over 5}\,x \\ | ||
− | & & | + | & & {4\cdot 5 \over 12} & = & x \\ |
& & x & = & 1,67 | & & x & = & 1,67 | ||
\end{array}</math> | \end{array}</math> |
Versionen från 1 februari 2015 kl. 12.12
Vi deriverar målfunktionen:
- \[ A\,(x) \, = \, -\,{6 \over 5}\,x^2 \, + \, 4\,x \]
- \[ A'(x) \, = \, -\,{12 \over 5}\,x \, + \, 4 \]
- \[ A''(x) \, = \, -\,{12 \over 5} \]
Derivatans nollställe:
- \[\begin{array}{rcrcl} A'(x) & = & -\,{12 \over 5}\,x \, + \, 4 & = & 0 \\ & & 4 & = & {12 \over 5}\,x \\ & & {4\cdot 5 \over 12} & = & x \\ & & x & = & 1,67 \end{array}\]
Andraderivatans tecken för \( \, x = 1,67 \, \):
\( A''(1,67) = -{12 \over 5} \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 1,67 \, \).
För \( \, x = 1,67 \, {\rm cm} \, \) antar målfunktionen (rektangelns area) sitt maximum.