Skillnad mellan versioner av "3.4 Lösning 6b"
Från Mathonline
Taifun (Diskussion | bidrag) (Skapade sidan med ':::<math>\begin{array}{rcl} f(x) & = & x^3 - 12\,x^2 + 45\,x - 44 \\ f'(x) & = & 3\,x^2 - 24\,x + 45 \\ f''(x) & =...') |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | + | ::<math> \, f(x) \, = \, x^4\, (1 \, - \, x) \, = \, x^4 \, - \, x^5 </math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ::<math> \, f\,'\,(x) \, = \, 4\,x^3 \, - \, 5\,x^4 \, </math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ::<math>\begin{array}{rcl} f(x) & = & x^4\, (1 \, - \, x) \, = \, x^4 \, - \, x^5 \\ | |
− | + | f'(x) & = & 4\,x^3 \, - \, 5\,x^4 \\ | |
− | + | f''(x) & = & 12\,x^2 - 20\,x^3 | |
− | + | \end{array}</math> | |
− | + | ||
+ | ::<math>\begin{array}{rcl} 4\,x^3 \, - \, 5\,x^4 & = & 0 \\ | ||
+ | x^3 \, (4 \,- \, 5\,x) & = & 0 \\ | ||
+ | x_1 & = & 0 \\ | ||
+ | 4 \,- \, 5\,x_2 & = & 0 \\ | ||
+ | 4 & = & 5\,x_2 \\ | ||
+ | {4 \over 5} & = & x_2 \\ | ||
+ | x_2 & = & 0,8 | ||
\end{array}</math> | \end{array}</math> | ||
− | + | ::<math> f''(x) \, = \, 12\,x^2 - 20\,x^3 </math> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ::<math> f''(0,8) \, = \, 12 \cdot 0,8^2 - 20 \cdot 0,8^3 = -2,56 < 0 \quad \Longrightarrow \quad x_2 = 0,8 \quad {\rm lokalt\;maximum.} </math> |
Versionen från 23 januari 2015 kl. 15.33
- \[ \, f(x) \, = \, x^4\, (1 \, - \, x) \, = \, x^4 \, - \, x^5 \]
- \[ \, f\,'\,(x) \, = \, 4\,x^3 \, - \, 5\,x^4 \, \]
- \[\begin{array}{rcl} f(x) & = & x^4\, (1 \, - \, x) \, = \, x^4 \, - \, x^5 \\ f'(x) & = & 4\,x^3 \, - \, 5\,x^4 \\ f''(x) & = & 12\,x^2 - 20\,x^3 \end{array}\]
- \[\begin{array}{rcl} 4\,x^3 \, - \, 5\,x^4 & = & 0 \\ x^3 \, (4 \,- \, 5\,x) & = & 0 \\ x_1 & = & 0 \\ 4 \,- \, 5\,x_2 & = & 0 \\ 4 & = & 5\,x_2 \\ {4 \over 5} & = & x_2 \\ x_2 & = & 0,8 \end{array}\]
- \[ f''(x) \, = \, 12\,x^2 - 20\,x^3 \]
- \[ f''(0,8) \, = \, 12 \cdot 0,8^2 - 20 \cdot 0,8^3 = -2,56 < 0 \quad \Longrightarrow \quad x_2 = 0,8 \quad {\rm lokalt\;maximum.} \]