Skillnad mellan versioner av "2.4 Lösning 9"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 37: Rad 37:
 
Detta resultat sätts in i ekvation <math> {\rm (II)} </math> för att få <math> b\, </math>:
 
Detta resultat sätts in i ekvation <math> {\rm (II)} </math> för att få <math> b\, </math>:
  
:<math>\begin{array}{lrcl} {\rm (II)} & \qquad\; 10 \cdot 0,56 \,+\, b & = & 4 \\
+
:<math>\begin{array}{lrcl} {\rm (II)} & \qquad\;\, 10 \cdot 0,56 \,+\, b & = & 4 \\
                                       & \qquad\; 5,6 \,+\, b          & = & 4 \\
+
                                       & \qquad\;\, 5,6 \,+\, b          & = & 4 \\
                                       & \qquad\;          b          & = & 4 \,-\, 5,6 \\
+
                                       & \qquad\;\,           b          & = & 4 \,-\, 5,6 \\
                                       & \qquad\;          b          & = & -1,6  
+
                                       & \qquad\;\,           b          & = & -1,6  
 
       \end{array}</math>
 
       \end{array}</math>

Versionen från 19 oktober 2014 kl. 13.48

Beröringspunkten \( (5, -6)\, \) ligger på kurvan:

\[ y = f(x) = a\,x^2 + b\,x \]

Vi sätter in beröringspunktens koordinater i kurvans ekvation:

\[ -6 = a \cdot 5^2 + b \cdot 5 \]

Vi får följande ekvation med \( a\, \) och \( b\, \) som obekanta:

\[ {\rm (I)} \qquad\qquad 25\,a \,+\, 5\,b \,=\, -6 \]

Å andra sidan har tangenten i beröringspunkten \( (5, -6)\, \) lutningen \( 4\, \). Detta innebär att kurvan i denna punkt har derivatan \( 4\, \), dvs \( f\,'(5) = 4 \). Därför bildar vi derivatan och använder denna information. \[\begin{array}{rcl} f\,'(x) & = & 2\,a\,x + b \\ f\,'(5) & = & 2\,a \cdot 5 + b & = & 4 \\ & = & 10\,a + b & = & 4 \\ \end{array}\] Vi får en till ekvation med \( a\, \) och \( b\, \) som obekanta:

\[ {\rm (II)} \qquad\qquad 10\,a \,+\, b \,=\, 4 \]

Ekvationssystemet \( {\rm (I)\,/\,(II)} \) löser vi med Additionsmetoden (Matte 2):

\[\begin{array}{lrcr} {\rm (I)} & \qquad\qquad 25\,a \,+\, 5\,b & = & -6 \\ {\rm (II)} & \qquad\qquad 10\,a \,+\, b & = & 4 \end{array}\]

Vi multiplicerar ekvation \( {\rm (II)} \) med \( 5\, \) och drar den av från ekvation \( {\rm (I)} \):

\[\begin{array}{lrcr} {\rm (I)} & \;\, 25\,a \,+\, 5\,b & = & -6 \\ 5 \cdot {\rm (II)} & \;\, 50\,a \,+\, 5\,b & = & 20 \\ 5 \cdot {\rm (II)} - {\rm (I)} & \;\, 25\,a \,+\, 0 & = & 14 \\ & \;\, a & = & {14 \over 25} \\ & \;\, a & = & 0,56 \end{array}\]

Detta resultat sätts in i ekvation \( {\rm (II)} \) för att få \( b\, \):

\[\begin{array}{lrcl} {\rm (II)} & \qquad\;\, 10 \cdot 0,56 \,+\, b & = & 4 \\ & \qquad\;\, 5,6 \,+\, b & = & 4 \\ & \qquad\;\, b & = & 4 \,-\, 5,6 \\ & \qquad\;\, b & = & -1,6 \end{array}\]