Skillnad mellan versioner av "2.2 Lösning 8a"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 3: Rad 3:
 
::<math> {\Delta y \over \Delta x} \; = \; {f(x + h) \, - \, f(x) \over h} </math>
 
::<math> {\Delta y \over \Delta x} \; = \; {f(x + h) \, - \, f(x) \over h} </math>
  
Tillämpad på vårt exempel <math> y = f(x) = x^2 </math>:
+
Tillämpad på vårt exempel <math> y = f(x) = 2\,x^2 - 5\,x + 32 </math>:
  
::<math> \Delta y = f(a + h) \, - \, fa) = (a + h)^2 - a^2 = a^2 + 2\,a\,h + h^2 - a^2 = 2\,a\,h + h^2 </math>
+
::<math> f(x + h) = 2\,(x+h)^2 - 5\,(x+h) + 32 </math>
  
::<math> \Delta x \, = \, a + h \, - \, a \, = \, h </math>
+
::<math> \Delta y = f(x + h) \, - \, f(x) = (a + h)^2 - a^2 = a^2 + 2\,a\,h + h^2 - a^2 = 2\,a\,h + h^2 </math>
 +
 
 +
::<math> \Delta x \, = \, x + h \, - \, x \, = \, h </math>
  
 
::<math> {\Delta y \over \Delta x} = {2\,a\,h + h^2 \over h} = {h\,(2\,a + h) \over h} = 2\,a + h </math>
 
::<math> {\Delta y \over \Delta x} = {2\,a\,h + h^2 \over h} = {h\,(2\,a + h) \over h} = 2\,a + h </math>

Versionen från 16 september 2014 kl. 16.27

Definitionen till ändringskvot i intervallet mellan \( x \, \) och \( x+h \, \):

\[ {\Delta y \over \Delta x} \; = \; {f(x + h) \, - \, f(x) \over h} \]

Tillämpad på vårt exempel \( y = f(x) = 2\,x^2 - 5\,x + 32 \):

\[ f(x + h) = 2\,(x+h)^2 - 5\,(x+h) + 32 \]
\[ \Delta y = f(x + h) \, - \, f(x) = (a + h)^2 - a^2 = a^2 + 2\,a\,h + h^2 - a^2 = 2\,a\,h + h^2 \]
\[ \Delta x \, = \, x + h \, - \, x \, = \, h \]
\[ {\Delta y \over \Delta x} = {2\,a\,h + h^2 \over h} = {h\,(2\,a + h) \over h} = 2\,a + h \]