Skillnad mellan versioner av "2.2 Lösning 8a"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 3: | Rad 3: | ||
::<math> {\Delta y \over \Delta x} \; = \; {f(x + h) \, - \, f(x) \over h} </math> | ::<math> {\Delta y \over \Delta x} \; = \; {f(x + h) \, - \, f(x) \over h} </math> | ||
− | Tillämpad på vårt exempel <math> y = f(x) = x^2 </math>: | + | Tillämpad på vårt exempel <math> y = f(x) = 2\,x^2 - 5\,x + 32 </math>: |
− | ::<math> | + | ::<math> f(x + h) = 2\,(x+h)^2 - 5\,(x+h) + 32 </math> |
− | ::<math> \Delta x \, | + | ::<math> \Delta y = f(x + h) \, - \, f(x) = (a + h)^2 - a^2 = a^2 + 2\,a\,h + h^2 - a^2 = 2\,a\,h + h^2 </math> |
+ | |||
+ | ::<math> \Delta x \, = \, x + h \, - \, x \, = \, h </math> | ||
::<math> {\Delta y \over \Delta x} = {2\,a\,h + h^2 \over h} = {h\,(2\,a + h) \over h} = 2\,a + h </math> | ::<math> {\Delta y \over \Delta x} = {2\,a\,h + h^2 \over h} = {h\,(2\,a + h) \over h} = 2\,a + h </math> |
Versionen från 16 september 2014 kl. 16.27
Definitionen till ändringskvot i intervallet mellan \( x \, \) och \( x+h \, \):
- \[ {\Delta y \over \Delta x} \; = \; {f(x + h) \, - \, f(x) \over h} \]
Tillämpad på vårt exempel \( y = f(x) = 2\,x^2 - 5\,x + 32 \):
- \[ f(x + h) = 2\,(x+h)^2 - 5\,(x+h) + 32 \]
- \[ \Delta y = f(x + h) \, - \, f(x) = (a + h)^2 - a^2 = a^2 + 2\,a\,h + h^2 - a^2 = 2\,a\,h + h^2 \]
- \[ \Delta x \, = \, x + h \, - \, x \, = \, h \]
- \[ {\Delta y \over \Delta x} = {2\,a\,h + h^2 \over h} = {h\,(2\,a + h) \over h} = 2\,a + h \]