Skillnad mellan versioner av "2.2 Lösning 4d"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 10: | Rad 10: | ||
<u>'''Bevis''':</u> | <u>'''Bevis''':</u> | ||
− | <math> {\Delta y \over \Delta x} = {f(b) - f(a) \over b-a} = {k\cdot b + m - (k\cdot a + m) \over b-a} = </math> | + | :<math> {\Delta y \over \Delta x} = {f(b) - f(a) \over b-a} = {k\cdot b + m - (k\cdot a + m) \over b-a} = </math> |
− | <math> = {k\cdot b + m - k\cdot a - m \over b-a} = {k\cdot b - k\cdot a \over b-a} = {k\cdot (b - a) \over b-a} = k </math> | + | :<math> = {k\cdot b + m - k\cdot a - m \over b-a} = {k\cdot b - k\cdot a \over b-a} = {k\cdot (b - a) \over b-a} = k </math> |
Versionen från 7 augusti 2014 kl. 15.23
Påstående:
Den allmänna linjära funktionen
\[ y \, = \, k\;x \, + \, m \]
där \( k\, \) och \( m\, \) är konstanter, har i alla intervall \( a \leq x \leq b \) den konstanta genomsnittliga förändringshastigheten \( k\, \).
Bevis:
\[ {\Delta y \over \Delta x} = {f(b) - f(a) \over b-a} = {k\cdot b + m - (k\cdot a + m) \over b-a} = \]
\[ = {k\cdot b + m - k\cdot a - m \over b-a} = {k\cdot b - k\cdot a \over b-a} = {k\cdot (b - a) \over b-a} = k \]