Skillnad mellan versioner av "1.2 Lösning 10"
Från Mathonline
Taifun (Diskussion | bidrag) m (Created page with "<math> 10 - {6 \cdot (6-2) \over 3} - {3 \cdot (5 - 4) + 3 \over a-2} = 10 - {6 \cdot 4 \over 3} - {3 \cdot 1 + 3 \over a-2} = 10 - {24 \over 3} - {3 + 3 \over a-2} = 10 - 8 - {6...") |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | <math> 10 - {6 \cdot (6-2) \over 3} - {3 \cdot (5 - 4) + 3 \over a-2} = 10 - {6 \cdot 4 \over 3} - {3 \cdot 1 + 3 \over a-2} = 10 - {24 \over 3} - {3 + 3 \over a-2} = 10 - 8 - {6 \over a-2} = 2 - {6 \over a-2} </math> | + | <math> 10 - {6 \cdot (6-2) \over 3} - {3 \cdot (5 - 4) + 3 \over a-2} = 10 - {6 \cdot 4 \over 3} - {3 \cdot 1 + 3 \over a-2} = </math> |
+ | |||
+ | <math> = 10 - {24 \over 3} - {3 + 3 \over a-2} = 10 - 8 - {6 \over a-2} = 2 - {6 \over a-2} </math> | ||
För att sista uttrycket längst till höger i raden ovan ska bli <math> 0 </math> måste <math>{6 \over a-2}</math> bli <math> 2 </math>, för <math> 2-2=0 </math>. | För att sista uttrycket längst till höger i raden ovan ska bli <math> 0 </math> måste <math>{6 \over a-2}</math> bli <math> 2 </math>, för <math> 2-2=0 </math>. |
Versionen från 3 oktober 2010 kl. 12.37
\( 10 - {6 \cdot (6-2) \over 3} - {3 \cdot (5 - 4) + 3 \over a-2} = 10 - {6 \cdot 4 \over 3} - {3 \cdot 1 + 3 \over a-2} = \)
\( = 10 - {24 \over 3} - {3 + 3 \over a-2} = 10 - 8 - {6 \over a-2} = 2 - {6 \over a-2} \)
För att sista uttrycket längst till höger i raden ovan ska bli \( 0 \) måste \({6 \over a-2}\) bli \( 2 \), för \( 2-2=0 \).
För att \({6 \over a-2}\) ska bli \( 2 \) måste \( a-2 \) bli \( 3 \), för \( {6\over3}=2 \).
För att \( a-2 \) ska bli \( 3 \) måste \( a \) bli \( 5 \), för \( 5-3=2 \). Därför\[ a = 5 \]