Skillnad mellan versioner av "1.1 Fördjupning till Polynom"

Från Mathonline
Hoppa till: navigering, sök
m (Polynomfunktioner av högre grad)
m
Rad 16: Rad 16:
  
 
[[Image: Chebyshev_Polyn_2nd Formler.jpg]]
 
[[Image: Chebyshev_Polyn_2nd Formler.jpg]]
 +
 +
Polynomen <math>U_n(x)\,</math> bildar en följd där varje polynom har ett nummer <math>n\,</math> som samtidigt är polynomens grad.
  
 
De nedsänkta [[1.1_Polynom#Allm.C3.A4n_definition|indexen]] <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används här både för att relatera indexet till polynomets grad och kunna skriva en formel för denna familj av polynom, vilket görs några rader längre fram.
 
De nedsänkta [[1.1_Polynom#Allm.C3.A4n_definition|indexen]] <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används här både för att relatera indexet till polynomets grad och kunna skriva en formel för denna familj av polynom, vilket görs några rader längre fram.
Rad 30: Rad 32:
  
 
De första två Chebyshevpolynomen <math>U_0, U_1\,</math> är explicit angivna (i den andra raden). Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math>U_0, U_1\,</math> i högerledet av rekursionsformeln (i den första raden). Det fjärde Chebyshevpolynomet <math>U_3\,</math> får man genom att sätta in <math>U_1, U_2\,</math> i högerledet osv. Rekursionsformeln ger oss möjligheten att ta fram Chebyshevpolynomen successivt, dvs vi kan ställa upp ett polynom med hjälp av de två föregående. I princip kan man ställa upp alla Chebyshevpolynom med denna formel utgående från de två första som är givna. Låt oss börja med att ställa upp det tredje (OBS! n = 2) med hjälp av de två första (n = 0 och 1):
 
De första två Chebyshevpolynomen <math>U_0, U_1\,</math> är explicit angivna (i den andra raden). Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math>U_0, U_1\,</math> i högerledet av rekursionsformeln (i den första raden). Det fjärde Chebyshevpolynomet <math>U_3\,</math> får man genom att sätta in <math>U_1, U_2\,</math> i högerledet osv. Rekursionsformeln ger oss möjligheten att ta fram Chebyshevpolynomen successivt, dvs vi kan ställa upp ett polynom med hjälp av de två föregående. I princip kan man ställa upp alla Chebyshevpolynom med denna formel utgående från de två första som är givna. Låt oss börja med att ställa upp det tredje (OBS! n = 2) med hjälp av de två första (n = 0 och 1):
 
Om vi tittar på tabellen ovan ser man att polynomen <math> U_n(x) </math> bildar en följd där varje polynom har ett nummer n.
 
  
 
<math> \displaystyle U_0(x) = \underline{1} </math>
 
<math> \displaystyle U_0(x) = \underline{1} </math>

Versionen från 23 juni 2014 kl. 09.50

       Teori          Övningar          Fördjupning          Extrauppgifter      


Polynomfunktioner av högre grad

Ett polynoms grad är ett mått på dess kompexitet.

Ett exempel på hur kompexiteten växer med graden (från 0 till 5) är följande sex polynom:

Chebyshev Polyn 2nd Formler.jpg

Polynomen \(U_n(x)\,\) bildar en följd där varje polynom har ett nummer \(n\,\) som samtidigt är polynomens grad.

De nedsänkta indexen \(_0,\,_1,\,_2,\,_3,\,_4,\,_5\) i beteckningarna \(U_0, U_1, U_2, U_3, U_4, U_5\,\) används här både för att relatera indexet till polynomets grad och kunna skriva en formel för denna familj av polynom, vilket görs några rader längre fram.

Här följer graferna till polynomen ovan ritade i samma koordinatsystem. De visar att kurvorna svänger oftare och får fler maxima/minima ju högre deras grad är:

Fil:Chebyshev Polyn 2nd 60.jpg

Dessa polynom heter Chebyshevpolynom av 2:a slag efter den ryske matematikern Chebyshev som presenterade dem 1854. De är relaterade till varandra med följande formel, kallad rekursionsformel:

\[ U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... \]
\[ U_0(x) = 1, \quad U_1(x) = 2\,x \]

De första två Chebyshevpolynomen \(U_0, U_1\,\) är explicit angivna (i den andra raden). Det tredje Chebyshevpolynomet \(U_2\,\) får man genom att sätta in \(U_0, U_1\,\) i högerledet av rekursionsformeln (i den första raden). Det fjärde Chebyshevpolynomet \(U_3\,\) får man genom att sätta in \(U_1, U_2\,\) i högerledet osv. Rekursionsformeln ger oss möjligheten att ta fram Chebyshevpolynomen successivt, dvs vi kan ställa upp ett polynom med hjälp av de två föregående. I princip kan man ställa upp alla Chebyshevpolynom med denna formel utgående från de två första som är givna. Låt oss börja med att ställa upp det tredje (OBS! n = 2) med hjälp av de två första (n = 0 och 1)\[ \displaystyle U_0(x) = \underline{1} \]

\( U_1(x) = \underline{2\,x} \)

För n = 2 ger formeln ovan\[ U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} \]

Sedan kan vi få fram \( U_3(x) \) genom att att sätta in n = 3 i formeln ovan\[ U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} \]

För n = 4 ger formeln ovan \( U_4(x) \) osv.\[ U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} \]

Så här kan man fortsätta för att få fram alla Chebyshevpolynom. Eftersom formeln som används bygger på att beräkna ett polynom från de två föregående kallar man den för polymens rekursionsformel. Man kan säga att följden av Chebyshevpolynomen definieras och genereras av rekursionsformeln ovan.

Jämförelse av koefficienter

Jämförelse av koefficienter är en teknik eller en metod som används i olika sammanhang. Vi kommer att använda den för att i nästa avsnitt faktorisera polynom och med hjälp av faktorisering lösa ekvationer av högre grad än 2. Vi ska börja med att definiera likhet mellan polynom.

Med likhet mellan polynom menar man en algebraisk identitet mellan polynomen. Två polynom av samma grad:

\[ P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 \]

och

\[ Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 \]

är lika med varandra om alla deras motsvarande koefficienter, dvs de som tillhör termer av samma grad, överensstämmer, närmare bestämt om:

\[ a_n = b_n, \quad a_{n-1} = b_{n-1}, \quad \ldots \quad a_1 = b_1, \quad a_0 = b_0 \]
Exempel 1

Två polynom är givna\[ P(x) = a \cdot x + 2\,a + b \]

\( Q(x) = 2\,x + 1\!\, \).

Låt \( a\, \) och \( b\, \) vara konstanter medan \( x\, \) är polynomens oberoende variabel.

För vilka värden på \( a\, \) och \( b\, \) är de två polymen lika med varandra?

Vi skriver \( P(x),\, \) och \( Q(x)\, \) så att vi lättare kan se motsvarande koefficienter\[ P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 \]

\( Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 \)

Jämförelse av koefficienterna till \( x^1\, \) leder till\[ a = 2\,\]

Jämförelse av koefficienterna till \( x^0 \,\) leder till\[ 2\,a + b = 1\!\,\]

Sätter man in \( a = 2\, \) i denna relation får man \( b = -3\, \).

Polynomen \( P(x)\, \) och \( Q(x)\, \) är lika med varandra för\[ a = 2\, \]

\( b = -3\, \)

Metoden kallas jämförelse av koefficienter och är ett viktigt verktyg för att lösa högre gradsekvationer genom att faktorisera högre gradspolynom, se övningarna 10 och 11.

Exempel 2

Problem: Följande 3:e gradspolynom är givet\[ P(x) = x^3 + 4\,x^2 + x - 26 \]

Hitta ett 2:a gradspolynom \( Q(x)\, \) så att:

\[ Q(x)\cdot (x-2) = P(x) \]

Svar: \( Q(x) = x^2 + 6 \, x + 13 \)

Lösning:

Det 2:a gradspolynomet \( Q(x)\, \) kan skrivas så här\[ Q(x) = a\,x^2 + b\,x + c \]

Vi bestämmer koefficienterna \( a\, , \, b\, \) och \( c\, \) så att \( Q(x)\cdot (x-2) = P(x) \)

\(\begin{align} Q(x) \cdot (x - 2) & = (a\,x^2 + b\,x + c)\cdot (x - 2) = a\,x^3 - 2\,a\,x^2 + b\,x^2 - 2\,b\,x + c\,x - 2\,c = \\ & = a\,x^3 + (b - 2\,a)\,x^2 + (c - 2\,b)\,x - 2\,c = \\ & = a \cdot x^3 + (b - 2\,a) \cdot x^2 + (c - 2\,b) \cdot x - 2\,c \cdot x^0 \\ P(x) & = 1 \cdot x^3 + \quad\;\; 4 \quad\;\; \cdot x^2 + \quad\;\; 1 \quad\;\; \cdot x - 26 \cdot x^0 \end{align} \)

Jämförelse av koefficienterna till \( x^3 \)-termen ger:

\[\begin{align} a & = 1 \end{align} \]

Jämförelse av koefficienterna till \( x^2 \)-termen ger:

\[\begin{align} b - 2\, a & = 4 \\ b - 2\cdot 1 & = 4 \\ b - 2 & = 4 \\ b & = 6 \\ \end{align} \]

Jämförelse av koefficienterna till \( x^1 \)-termen ger:

\[\begin{align} c - 2\, b & = 1 \\ c - 2\cdot 6 & = 1 \\ c - 12 & = 1 \\ c & = 13 \\ \end{align} \]

Jämförelse av koefficienterna till \( x^0 \)-termen bekräftar värdet på c:

\[\begin{align} - 2\,c & = - 26 \\ c & = 13 \\ \end{align} \]

Vi får \( a = 1\, , \, b = 6\, \) och \( c = 13\, \) och därmed\[ Q(x) = x^2 + 6 \, x + 13 \]