Skillnad mellan versioner av "1.5 Lösning 7a"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
<math> 7\%\,</math> årsränta innebär en förändringsfaktor på <math> 1,07\, </math> per år. | <math> 7\%\,</math> årsränta innebär en förändringsfaktor på <math> 1,07\, </math> per år. | ||
− | Vi inför som obekanten <math> x\, </math> | + | Vi inför som obekanten: |
+ | |||
+ | <math> x\, = </math> Antal år som behövs för att startkapitalet fördubblats. | ||
Aktuellt belopp på kontot: | Aktuellt belopp på kontot: |
Versionen från 22 september 2012 kl. 10.37
\( 7\%\,\) årsränta innebär en förändringsfaktor på \( 1,07\, \) per år.
Vi inför som obekanten\[ x\, = \] Antal år som behövs för att startkapitalet fördubblats.
Aktuellt belopp på kontot:
- efter \(1\,\) år\[ \;\,5\,000 \cdot 1,07 \]
- efter \(2\,\) år\[ (5\,000 \cdot 1,07) \cdot 1,07 = 5\,000 \cdot (1,07)^2 \]
\[ \cdots \]
- efter \(x\,\) år\[ (5\,000 \cdot 1,07) \cdot 1,07) \cdots 1,07 = 5\,000 \cdot (1,07)^x \]
Kravet på fördubbling av startkapitalet ger följande ekvation\[\begin{align} 5\,000 \cdot (1,07)^x & = 10\,000 \\ (1,07)^x & = 2 \\ \end{align}\]
Detta är en exponentialfunktion med basen 1,07.