Skillnad mellan versioner av "1.4 Lösning 10d"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
 
Man kommer inte att se någon skillnad i graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Men att av detta dra slutsatsen att funktionerna är identiska, är felaktigt, därför att de skiljer sig i sitt beteende för <math> x = -2\, </math>.  
 
Man kommer inte att se någon skillnad i graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Men att av detta dra slutsatsen att funktionerna är identiska, är felaktigt, därför att de skiljer sig i sitt beteende för <math> x = -2\, </math>.  
  
Medan <math> f(x)\, </math> fortfarande inte är definierad för <math> x = -2\, </math> - även om denna diskontinuitet är hävbar - är <math> g(x)\, </math> definierad för detta x-värde.
+
Medan <math> f(x)\, </math> fortfarande inte är definierad för <math> x = -2\, </math> - även om denna diskontinuitet är hävbar - är <math> g(x)\, </math> definierad och kontinuerlig för detta x-värde.

Versionen från 21 september 2012 kl. 11.57

Man kommer inte att se någon skillnad i graferna till \( f(x)\, \) och \( g(x)\, \). Men att av detta dra slutsatsen att funktionerna är identiska, är felaktigt, därför att de skiljer sig i sitt beteende för \( x = -2\, \).

Medan \( f(x)\, \) fortfarande inte är definierad för \( x = -2\, \) - även om denna diskontinuitet är hävbar - är \( g(x)\, \) definierad och kontinuerlig för detta x-värde.