Skillnad mellan versioner av "2.4 Lösning 4c"

Från Mathonline
Hoppa till: navigering, sök
m (Created page with "<math> y = {2 \over 3}\,x\,\sqrt{x} - {1 \over x^2} = {2 \over 3}\,x\cdot x^{1 \over 2} - {1 \over x^2} = {2 \over 3}\, x^{1+{1 \over 2}} - {1 \over x^2} = {2 \over 3}\, x^{3 \ov...")
 
m
Rad 1: Rad 1:
<math> y = {2 \over 3}\,x\,\sqrt{x} - {1 \over x^2} = {2 \over 3}\,x\cdot x^{1 \over 2} - {1 \over x^2} = {2 \over 3}\, x^{1+{1 \over 2}} - {1 \over x^2} = {2 \over 3}\, x^{3 \over 2} - {1 \over x^2} = </math>
+
<math> y = {2 \over 3}\,x\,\sqrt{x} - {1 \over x^2} = {2 \over 3}\,x\cdot x^{1 \over 2} - {1 \over x^2} = {2 \over 3}\, x^{1+{1 \over 2}} - {1 \over x^2} = {2 \over 3}\, x^{3 \over 2} - {1 \over x^2} = {2 \over 3}\, x^{3 \over 2} - x^{-2} </math>
 +
 
 +
 
 +
<math> y\,' = {3 \over 2}\cdot {2 \over 3}\, x^{{3 \over 2}-1} - (-2)\cdot x^{-2-1} = x^{1 \over 2} + 2\cdot x^{-3} = </math>

Versionen från 12 maj 2011 kl. 18.43

\( y = {2 \over 3}\,x\,\sqrt{x} - {1 \over x^2} = {2 \over 3}\,x\cdot x^{1 \over 2} - {1 \over x^2} = {2 \over 3}\, x^{1+{1 \over 2}} - {1 \over x^2} = {2 \over 3}\, x^{3 \over 2} - {1 \over x^2} = {2 \over 3}\, x^{3 \over 2} - x^{-2} \)


\( y\,' = {3 \over 2}\cdot {2 \over 3}\, x^{{3 \over 2}-1} - (-2)\cdot x^{-2-1} = x^{1 \over 2} + 2\cdot x^{-3} = \)