Skillnad mellan versioner av "1.1 Lösning 13"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 23: | Rad 23: | ||
HL: <math> 1 - \sqrt{36\cdot \left({1 \over 3}\right)^2 - {1 \over {1 \over 3}}} = 1 - \sqrt{36\cdot {1 \over 9} - {3}} = 1 - \sqrt{4 - {3}} = 1 - 1 = 0 </math> | HL: <math> 1 - \sqrt{36\cdot \left({1 \over 3}\right)^2 - {1 \over {1 \over 3}}} = 1 - \sqrt{36\cdot {1 \over 9} - {3}} = 1 - \sqrt{4 - {3}} = 1 - 1 = 0 </math> | ||
− | + | VL <math>\not=</math> HL <math> \Rightarrow\, x_1 = {1 \over 3} </math> är en falsk rot. | |
− | + | ||
− | VL <math>\not=</math> HL <math> \Rightarrow\, x_1 = 1 \over 3} </math> är en falsk rot. | + | |
---- | ---- |
Versionen från 10 april 2011 kl. 17.40
\(\begin{align} 6\;x & = 1 - \sqrt{36\;x^2 - {1 \over x}} & & \qquad | - 1 \\ 6\;x - 1 & = - \sqrt{36\;x^2 - {1 \over x}} & & \qquad | \; (\;\;\;)^2 \\ (6\,x - 1)^2 & = 36\,x^2 - {1 \over x} \\ 36\,x^2 - 12\,x + 1 & = 36\,x^2 - {1 \over x} & & \qquad | - 36\,x^2 \\ - 12\,x + 1 & = - {1 \over x} & & \qquad | \cdot x \\ - 12\,x^2 + x & = - 1 & & \qquad \\ 12\,x^2 - x - 1 & = 0 & & \qquad | \; /\;12 \\ x^2 - {1 \over 12}\,x - {1 \over 12} & = 0 \\ x_{1,2} & = {1 \over 24} \pm \sqrt{{1 \over 24^2} + {1 \over 12}} \\ x_{1,2} & = {1 \over 24} \pm \sqrt{{1 \over 24^2} + {4\cdot 12 \over 24^2}} \\ x_{1,2} & = {1 \over 24} \pm \sqrt[[:Mall:49 \over 24^2]] \\ x_{1,2} & = {1 \over 24} \pm {7 \over 24} \\ x_1 & = {1 \over 3} \\ x_2 & = -{1 \over 4} \\ \end{align}\)
Prövning av \( x_1 = {1 \over 3} \):
VL\[ 6\;x = 6\cdot {1 \over 3} = 2 \]
HL\[ 1 - \sqrt{36\cdot \left({1 \over 3}\right)^2 - {1 \over {1 \over 3}}} = 1 - \sqrt{36\cdot {1 \over 9} - {3}} = 1 - \sqrt{4 - {3}} = 1 - 1 = 0 \]
VL \(\not=\) HL \( \Rightarrow\, x_1 = {1 \over 3} \) är en falsk rot.
Prövning av \( x_2 = -{1 \over 4} \):
VL\[ \sqrt{9 + 2 + \sqrt{2 \cdot 9 + 7}} = \sqrt{11 + \sqrt{2 \cdot 9 + 7}} = \sqrt{11 + \sqrt{18 + 7}} = \]
\( = \sqrt{11 + \sqrt{25}} = \sqrt{11 + 5} = \sqrt{16} = 4 \)
HL\[ 4\, \]
VL = HL \( \Rightarrow\, x_2 = 9 \) är en sann rot.
Svar\[ x = 9\, \] är rotekvationens enda lösning.