Skillnad mellan versioner av "1.5 Lösning 5b"
Från Mathonline
Taifun (Diskussion | bidrag) m (Created page with "::<math>\begin{align} (3^x + 3^{x+1}) \,/\, 4\; & = \; 9 \qquad \; | \; \cdot 4 \\ 3^x + 3^{x+1} & = \; 36 \\ ...") |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | ::<math>\begin{align} ( | + | ::<math>\begin{align} (2^x + 2^{x-1}) \cdot {2 \over 3}\; & = \; 32 \qquad \; | \; \cdot {3 \over 2} \\ |
− | + | 2^x + 2^{x-1} & = \; 48 \\ | |
− | + | 2^x + 2^x \cdot 2^{-1} & = \; 48 \\ | |
− | + | 2^x \cdot (1+{1\over 2}) & = \; 48 \\ | |
− | + | {3 \over 2} \cdot 2^x & = \; 48 \qquad \; | \; \cdot {2 \over 3}\\ | |
− | + | 2^x & = \; 32 \\ | |
− | + | 2^x & = \; 2^5 \\ | |
− | + | x & = \; 5 | |
\end{align} </math> | \end{align} </math> |
Nuvarande version från 10 mars 2011 kl. 13.43
- \[\begin{align} (2^x + 2^{x-1}) \cdot {2 \over 3}\; & = \; 32 \qquad \; | \; \cdot {3 \over 2} \\ 2^x + 2^{x-1} & = \; 48 \\ 2^x + 2^x \cdot 2^{-1} & = \; 48 \\ 2^x \cdot (1+{1\over 2}) & = \; 48 \\ {3 \over 2} \cdot 2^x & = \; 48 \qquad \; | \; \cdot {2 \over 3}\\ 2^x & = \; 32 \\ 2^x & = \; 2^5 \\ x & = \; 5 \end{align} \]