Skillnad mellan versioner av "1.5 Lösning 1d"

Från Mathonline
Hoppa till: navigering, sök
m (Created page with "<math> {(x^{-2})^6 \cdot \sqrt{y} \over y^{0,5} \cdot (x^{-4})^3} = {x^{-12} \cdot \sqrt{y} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over ...")
 
m
 
Rad 1: Rad 1:
<math> {(x^{-2})^6 \cdot \sqrt{y} \over y^{0,5} \cdot (x^{-4})^3} = {x^{-12} \cdot \sqrt{y} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over 2} \cdot x^{-12}} = 1 </math>
+
:<math> {(x^{-2})^6 \cdot \sqrt{y} \over y^{0,5} \cdot (x^{-4})^3} = {x^{-12} \cdot \sqrt{y} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over 2} \cdot x^{-12}} = 1 </math>

Nuvarande version från 24 mars 2015 kl. 23.16

\[ {(x^{-2})^6 \cdot \sqrt{y} \over y^{0,5} \cdot (x^{-4})^3} = {x^{-12} \cdot \sqrt{y} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over 2} \cdot (x^{-4})^3} = {x^{-12} \cdot y^{1 \over 2} \over y^{1 \over 2} \cdot x^{-12}} = 1 \]