Skillnad mellan versioner av "3.3 Ekvationer+"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 212: Rad 212:
 
</tr>
 
</tr>
 
</table>
 
</table>
tioner och parenteser som till slut, när uttrycket beräknas, ger ett värde: <b><span style="color:red">uttryckets värde</span></b>, se <b>3.1 Algebraiska uttryck</b>.
+
tioner och parenteser som till slut, när uttrycket beräknas, ger ett värde: <b><span style="color:red">uttryckets värde</span></b>, se 3.1 Algebraiska uttryck.
 
----
 
----
 
<b><span style="color:red">Ekvation</span></b> är en likhet mellan två uttryck med endast EN obekant (än så länge i Matte 1).
 
<b><span style="color:red">Ekvation</span></b> är en likhet mellan två uttryck med endast EN obekant (än så länge i Matte 1).
 
----
 
----
<b><span style="color:red">Formel</span></b> är en likhet mellan två uttryck med minst två variabler, behandlas i <b>3.7 Formler</b>.
+
<b><span style="color:red">Formel</span></b> är en likhet mellan två uttryck med minst två variabler, behandlas i 3.7 Formler.
 
</div>
 
</div>
  

Versionen från 29 december 2020 kl. 19.55

       Genomgång          Quiz          Övningar          Genomgång+      


Det här är en mer utförlig version av genomgången.


Vad är en ekvation?

Ekvation Obekant VL HL 350.jpg


En ekvation är en likhet mellan två uttryck,

har alltid formen VL = HL och innehåller i

regel en variabel, kallad obekant, t.ex. \( \, x \; \):

Ekvationen: \( \quad\;\; 2\,x \; + \; 14 \; = \; 18 \)

Lösningen: \( \qquad\qquad\;\; \)
\( x \; = \; {\color{Red} 2} \)


Varför lösning  ?


Kontroll:     Sätt in lösningen i ekvationen.

VL \( \, = \, 2 \, \cdot \, {\color{Red} 2} \, + \, 14 \, = \, 4 \, + \, 14 \, = \, 18 \)

HL \( \, = \, 18 \)

VL \( = \) HL \( \, \Rightarrow \, x = {\color{Red} 2} \) är en korrekt lösning.

Kontroll kallas ibland även för prövning.


Man säger: Lösningen satisfierar (uppfyller) ekvationen.


Två lösningsmetoder:


1.   Övertäckningsmetoden


Exemplet ovan:

  \( 2 \, x \;\; + \; 14 \; = \; 18 \quad {\color{Red} {\rm Täck\;över\;}} 2 \, x \)

\(\quad\)
\( \, + \;\, 14 \; = \; 18 \)

  \( \;\, {\color{Red} ?} \;\;\; + \; 14 \; = \; 18 \)

  \( \;\, {\color{Red} 4} \;\;\; + \; 14 \; = \; 18 \)

  \( \;\, \Downarrow \)

  \( \, 2 \, \cdot \; x \;\; = \;\, {\color{Red} 4} \qquad\quad {\color{Red} {\rm Täck\;över\;}} x \)

  \( \, 2 \, \cdot \; \)
\( \quad \)
\( \; = \;\, 4 \)

  \( \, 2 \, \cdot \; {\color{Red} ?} \;\; = \;\; 4 \)

  \( \, 2 \, \cdot \; {\color{Red} 2} \;\; = \;\; 4 \)

  \( \quad\;\;\; \Downarrow \)

 
\( \; x \; = \; {\color{Red} 2} \)


2.   Allmän metod


Exempel:

\[\begin{array}{rclcl} x \, + \, (x \, + \, 14) & = & 18 & & \\ x \, + \, x \, + \, 14 & = & 18 & & \\ 2\,x \, + \, 14 & = & 18 & \qquad | & {\color{Red} {- \, 14}} \\ 2\,x \, + \, 14 \, {\color{Red} {- \, 14}} & = & 18 \, {\color{Red} {- \, 14}} & & \\ 2 \cdot x \, & = & 4 & \qquad | & {\color{Red} {/ \; 2}} \\ \displaystyle \frac{2 \cdot x}{{\color{Red} {2}}} & = & \displaystyle \frac{4}{{\color{Red} {2}}} & & \\ x \, & = & 2 & & \end{array}\]

Skrivsättet \( \quad\;\;\, | \quad {\color{Red} {- \, 14}} \quad\;\;\, \) är en kommentar och betyder:

Subtrahera \( \, 14 \, \) från ekvationens båda led.

Kommentaren \( \;\; | \quad {\color{Red} {/ \; 2}} \;\; \) betyder:

Dividera ekvationens båda led med \( \, 2 \).


Ekvation som en våg i balans


Målet: \( \qquad\quad \) Att isolera \( \, {\color{Red} x} \, \) på ett led.


Steg 1:

  Förenkla uttrycken i ekvationens båda led så långt som

  möjligt. I exemplet ovan:

\[\begin{array}{rclcl} x \, + \, (x \, + \, 14) & = & 18 & & \\ x \, + \, x \, + \, 14 & = & 18 & & \\ 2\,x \, + \, 14 & = & 18 & & \end{array}\]


Steg 2:

  Utför samma operation på ekvationens båda led:

\[\begin{array}{rcl} 2\,x \, + \, 14 & = & 18 \qquad\quad | \;\; {\color{Red} {- \, 14}} \\ 2\,x \, + \, 14 \, {\color{Red} {- \, 14}} & = & 18 \, {\color{Red} {- \, 14}} \\ \end{array}\]

  Förenkla de nyuppkomna uttrycken.

\[\begin{array}{rclcl} \quad\; 2 \cdot x \, & = & 4 & \qquad | & {\color{Red} {/ \; 2}} \\ \displaystyle \frac{2 \cdot x}{{\color{Red} {2}}} & = & \displaystyle \frac{4}{{\color{Red} {2}}} & & \end{array}\]

  Förenkla de nyuppkomna uttrycken:

\[\begin{array}{rclcl} \quad\; x \, & = & 2 & & \end{array}\]

\( \qquad\quad \) Vilken operation?

Regel:   Den inversa operationen med målet att isolera \( \, x \, \).

\[ 2\,x \, + \, 14 \; = \; 18 \qquad\quad | \;\; {\color{Red} {- \, 14}} \]

  Eftersom:

 \( \, {\color{Red} {- \, 14}} \, \) är den inversa (motsatta) operationen till \( \, + \, 14 \, \).

\[ \;\; 2 \cdot x \; = \; 4 \qquad\quad\;\;\, | \;\; {\color{Red} {/ \; 2}} \]

  Eftersom:

  \( \, {\color{Red} {/ \; 2}} \, \) är den inversa operationen till \( \, \cdot \; 2 \, \).



Begreppsförklaringar


Variabler är platshållare för tal och betecknas med

bokstäver, jämförbart med lådor som har etiketter.

Innehållet är variabelns värde (tal) och kan bytas ut.


Obekant är en variabel som förekommer i en ekvation.


Uttryck är en kombination av variabler, tal, räkneopera-

    
God redovisningsstil vid ekvationslösning:
  •   Definiera vad din obekant står för.
  •   Skriv likhetstecknen exakt under varandra (samma kolumn).
  •   Kommentera, när det behövs, det du gör antingen genom att   
använda skrivsättet i exemplet ovan eller på ditt eget sätt,
bara det blir förståeligt vad du gör.
  • Skriv kommentarerna skilda från ekvationens lösningsgång.

tioner och parenteser som till slut, när uttrycket beräknas, ger ett värde: uttryckets värde, se 3.1 Algebraiska uttryck.


Ekvation är en likhet mellan två uttryck med endast EN obekant (än så länge i Matte 1).


Formel är en likhet mellan två uttryck med minst två variabler, behandlas i 3.7 Formler.




Copyright © 2020 TechPages AB. All Rights Reserved.