Skillnad mellan versioner av "3.5 Extremvärdesproblem"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 23: Rad 23:
 
Punkten <math> \, (x,\,y) \, </math> rör sig på parabeln, se figuren. Placera den så
 
Punkten <math> \, (x,\,y) \, </math> rör sig på parabeln, se figuren. Placera den så
  
att rektangelns area <math> \, A \, </math> blir så stor som möjligt.
+
att rektangelns area <math> \, A \, </math> blir <strong><span style="color:red">maximal</span></strong>.
  
  
 
'''a)''' &nbsp; Ställ upp rektangelns area som en funktion av <math> \, x \, </math> dvs <math> \, A(x) \, </math>.
 
'''a)''' &nbsp; Ställ upp rektangelns area som en funktion av <math> \, x \, </math> dvs <math> \, A(x) \, </math>.
  
'''b)''' &nbsp; Bestäm <math> \, x \, </math> så att <math> \, A(x) \, </math> antar ett maximum.  
+
'''b)''' &nbsp; Bestäm <math> \, x \, </math> så att <math> \, A(x) \, </math> blir maximal.  
  
 
'''c)''' &nbsp; Beräkna rektangelns maximala area.
 
'''c)''' &nbsp; Beräkna rektangelns maximala area.
Rad 47: Rad 47:
 
:Men <math> \, A\,(x, \, {\color{Red} y}) \, </math> är en funktion av ''två'' variabler som vi inte kan hantera.
 
:Men <math> \, A\,(x, \, {\color{Red} y}) \, </math> är en funktion av ''två'' variabler som vi inte kan hantera.
  
:För att skriva om den till en funktion <math> \, A\,(x) \, </math> av endast ''en'' variabel, nämligen <math> \, x \, </math>, måste <math> \, {\color{Red} y} \, </math> elimineras.
+
:Därför måste <math> A\,(x, \, {\color{Red} y}) \, </math> skrivas om till en funktion <math> \, A\,(x) \, </math> av endast ''en'' variabel, nämligen <math> \, x </math>.
  
:Det gör vi genom att utnyttja sambandet mellan <math> \, x \, </math> och <math> \, {\color{Red} y} \, </math> som är givet av parabelns ekvation.
+
:Detta gör vi genom att eliminera <math> \, {\color{Red} y} \, </math><span style="color:black">:</span> &nbsp; Vi utnyttjar sambandet mellan <math> \, x \, </math> och <math> \, {\color{Red} y} \, </math> som är givet av parabelns ekvation.
  
 
:Rektangelns "rörliga" hörn <math> \, (x,\,{\color{Red} y}) \, </math> måste alltid ligga på parabeln. Därför måste <math> \, x \, </math> och <math> \, y \, </math> uppfylla <strong><span style="color:red">parabelns ekvation</span></strong><span style="color:black">:</span>
 
:Rektangelns "rörliga" hörn <math> \, (x,\,{\color{Red} y}) \, </math> måste alltid ligga på parabeln. Därför måste <math> \, x \, </math> och <math> \, y \, </math> uppfylla <strong><span style="color:red">parabelns ekvation</span></strong><span style="color:black">:</span>
 
+
<table>
<div style="border:1px solid black;
+
<tr>
 +
  <td><div style="border:1px solid black;
 
display:inline-block !important;
 
display:inline-block !important;
 
margin-left: 50px !important;
 
margin-left: 50px !important;
 
padding:10px 10px 10px 10px;  
 
padding:10px 10px 10px 10px;  
-webkit-border-radius: 10px;"><strong><math> \displaystyle {\color{Red} y} \, = \, -\,{\, x^2 \over 2} \, + \, 5 </math></strong></div>
+
-webkit-border-radius: 10px;"><strong><math> \displaystyle {\color{Red} y} \, = \, -\,{\, x^2 \over 2} \, + \, 5 </math></strong></div></td>
 
+
  <td><math> \qquad </math></td>
:Detta samband kallas för problemets <strong><span style="color:red">bivillkor</span></strong>.
+
  <td>Detta samband kallas för problemets <strong><span style="color:red">bivillkor</span></strong>.</td>
 
+
</tr>
 +
</table>
  
 
==== <b><span style="color:#931136">Bivillkor för ett extremvärdesproblem</span></b> ====
 
==== <b><span style="color:#931136">Bivillkor för ett extremvärdesproblem</span></b> ====
 
<div class="border-divblue">
 
<div class="border-divblue">
Ett extremvärdesproblems <strong><span style="color:red">bivillkor</span></strong> är ett samband mellan problemets variabler och
+
Ett extremvärdesproblems <strong><span style="color:red">bivillkor</span></strong> är ett samband som bestäms av problemets givna geometriska
  
bestäms av problemets givna geometriska eller andra egenskaper.   
+
eller andra föreskrivna egenskaper (eng. ''constraints''), i <b><span style="color:#931136">Exempel 1</span></b> parabelns ekvation <small><math> \, \displaystyle {\color{Red} y} \, = \, -\,{\, x^2 \over 2} \, + \, 5 </math></small>.   
 
</div>
 
</div>
  
  
:Exemplets bivillkor är parabelns ekvation därför att punkten <math> \, (x,\,y) \, </math> alltid måste följa parabeln (problemets geometri), se figuren ovan.
+
:<b><span style="color:#931136">Exempel 1</span></b>:s bivillkor är därför parabelns ekvation eftersom punkten <math> \, (x,\,y) \, </math> alltid måste följa parabeln (problemets geometri), se figuren ovan.
  
 
:Bivillkoret används för att skriva om rektangelns area från en funktion av två variabler <math> \, x \, </math> och <math> \, y \, </math> till en funktion av en variabel <math> \, x </math>.
 
:Bivillkoret används för att skriva om rektangelns area från en funktion av två variabler <math> \, x \, </math> och <math> \, y \, </math> till en funktion av en variabel <math> \, x </math>.
Rad 78: Rad 80:
 
::::<math> A\,(x, \, {\color{Red} y}) \, = \, 2 \cdot x \cdot {\color{Red} y} \, = \, 2 \cdot x \cdot \left({\color{Red} {-\,{\, x^2 \over 2} \, + \, 5}}\right) \, = \, -\,x^3 \, + \, 10\,x </math>
 
::::<math> A\,(x, \, {\color{Red} y}) \, = \, 2 \cdot x \cdot {\color{Red} y} \, = \, 2 \cdot x \cdot \left({\color{Red} {-\,{\, x^2 \over 2} \, + \, 5}}\right) \, = \, -\,x^3 \, + \, 10\,x </math>
  
:På så sätt får vi en funktion för rektangelns area som endast beror av <math> \, x \, </math>. Denna funktion kallas för problemets <strong><span style="color:red">målfunktion</span></strong>:
+
:På så sätt får vi en funktion för rektangelns area som endast beror av <math> \, x \, </math>. Denna funktion som ska maximeras kallas för problemets <strong><span style="color:red">målfunktion</span></strong>:
  
 
<div style="border:1px solid black;
 
<div style="border:1px solid black;
Rad 85: Rad 87:
 
padding:10px 10px 10px 10px;  
 
padding:10px 10px 10px 10px;  
 
-webkit-border-radius: 10px;"><strong><math> A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x </math></strong></div>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; med definitionsmängden<span style="color:black">:</span> <math> \quad 0 \, \leq \, x \, \leq \, \sqrt{10} </math>
 
-webkit-border-radius: 10px;"><strong><math> A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x </math></strong></div>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; med definitionsmängden<span style="color:black">:</span> <math> \quad 0 \, \leq \, x \, \leq \, \sqrt{10} </math>
 
:Det är denna målfunktion (rektangelns area) som ska maximeras.
 
 
  
 
==== <b><span style="color:#931136">Målfunktion för ett extremvärdesproblem</span></b> ====
 
==== <b><span style="color:#931136">Målfunktion för ett extremvärdesproblem</span></b> ====
 
<div class="border-divblue">
 
<div class="border-divblue">
Ett extremvärdesproblems <strong><span style="color:red">målfunktion</span></strong> är alltid den funktion som ska maximeras eller minimeras.
+
Ett extremvärdesproblems <strong><span style="color:red">målfunktion</span></strong> är alltid den funktion som ska maximeras eller minimeras, i <b><span style="color:#931136">Exempel 1</span></b> <small><math> \, A\,(x) \, </math></small>.
 
----
 
----
  
Rad 101: Rad 100:
  
  
:Exemplets målfunktion har definitionsmängden ovan vars vänstra ända <math> \, 0 \, </math> bestäms av att arean och därmed <math> \, x \, </math> inte kan bli negativ.
+
:<b><span style="color:#931136">Exempel 1</span></b>:s målfunktion <math> \, A\,(x) \, </math> har definitionsintervallet <math> \, 0 \, \leq \, x \, \leq \, \sqrt{10} </math> därför att arean och därmed <math> \, x \, </math> inte kan bli negativ.
  
:Den högra ändan <math> \, \sqrt{10} \, </math> bestäms av parabelns positiva nollställe dvs av lösningen till ekvationen <math> \, \displaystyle -{x^2 \over 2} + 5 = 0 </math>, se figuren ovan.  
+
:Den högra ändan <math> \, \sqrt{10} \, </math> är parabelns positiva nollställe (se figuren ovan) dvs lösningen till ekvationen <math> \, \displaystyle -{x^2 \over 2} + 5 = 0 </math>.  
 
----
 
----
  
Rad 498: Rad 497:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2011-2016 Math Online Sweden AB. All Rights Reserved.

Versionen från 1 februari 2016 kl. 16.48

       <-- Förra demoavsnitt          Genomgång          Övningar      


Lektion 34 Extremvärdesproblem I

Lektion 35 Extremvärdesproblem II

Exempel 1 Rektangel i parabel

En rektangel är inbunden i en parabel vars ekvation är given:
\[ y \, = \, -\,{\, x^2 \over 2} \, + \, 5 \qquad {\rm med} \qquad y \, \geq \, 0 \]

Punkten \( \, (x,\,y) \, \) rör sig på parabeln, se figuren. Placera den så

att rektangelns area \( \, A \, \) blir maximal.


a)   Ställ upp rektangelns area som en funktion av \( \, x \, \) dvs \( \, A(x) \, \).

b)   Bestäm \( \, x \, \) så att \( \, A(x) \, \) blir maximal.

c)   Beräkna rektangelns maximala area.

       35 Rektangel i parabel.jpg


Lösning:

a)   Rektangelns area kan skrivas som \( \quad A\,(x, \, {\color{Red} y}) \; = \; 2 \, \cdot x \, \cdot \, {\color{Red} y} \)

Men \( \, A\,(x, \, {\color{Red} y}) \, \) är en funktion av två variabler som vi inte kan hantera.
Därför måste \( A\,(x, \, {\color{Red} y}) \, \) skrivas om till en funktion \( \, A\,(x) \, \) av endast en variabel, nämligen \( \, x \).
Detta gör vi genom att eliminera \( \, {\color{Red} y} \, \):   Vi utnyttjar sambandet mellan \( \, x \, \) och \( \, {\color{Red} y} \, \) som är givet av parabelns ekvation.
Rektangelns "rörliga" hörn \( \, (x,\,{\color{Red} y}) \, \) måste alltid ligga på parabeln. Därför måste \( \, x \, \) och \( \, y \, \) uppfylla parabelns ekvation:
\( \displaystyle {\color{Red} y} \, = \, -\,{\, x^2 \over 2} \, + \, 5 \)
\( \qquad \) Detta samband kallas för problemets bivillkor.

Bivillkor för ett extremvärdesproblem

Ett extremvärdesproblems bivillkor är ett samband som bestäms av problemets givna geometriska

eller andra föreskrivna egenskaper (eng. constraints), i Exempel 1 parabelns ekvation \( \, \displaystyle {\color{Red} y} \, = \, -\,{\, x^2 \over 2} \, + \, 5 \).


Exempel 1:s bivillkor är därför parabelns ekvation eftersom punkten \( \, (x,\,y) \, \) alltid måste följa parabeln (problemets geometri), se figuren ovan.
Bivillkoret används för att skriva om rektangelns area från en funktion av två variabler \( \, x \, \) och \( \, y \, \) till en funktion av en variabel \( \, x \).
Därför sätter vi in parabelns ekvation \( \, \displaystyle {\color{Red} y} = -\,{\, x^2 \over 2} + 5 \, \) i rektangelns area \( \, A\,(x, \, {\color{Red} y}) = 2\cdot x \cdot {\color{Red} y} \, \) för att eliminera \( \, {\color{Red} y} \,\):
\[ A\,(x, \, {\color{Red} y}) \, = \, 2 \cdot x \cdot {\color{Red} y} \, = \, 2 \cdot x \cdot \left({\color{Red} {-\,{\, x^2 \over 2} \, + \, 5}}\right) \, = \, -\,x^3 \, + \, 10\,x \]
På så sätt får vi en funktion för rektangelns area som endast beror av \( \, x \, \). Denna funktion som ska maximeras kallas för problemets målfunktion:
\( A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x \)
         med definitionsmängden: \( \quad 0 \, \leq \, x \, \leq \, \sqrt{10} \)

Målfunktion för ett extremvärdesproblem

Ett extremvärdesproblems målfunktion är alltid den funktion som ska maximeras eller minimeras, i Exempel 1 \( \, A\,(x) \, \).


Extremvärdesproblem består i regel av ett bivillkor och en målfunktion.


Bivillkoret används för att reducera målfunktionen till en funktion av endast en variabel.


Exempel 1:s målfunktion \( \, A\,(x) \, \) har definitionsintervallet \( \, 0 \, \leq \, x \, \leq \, \sqrt{10} \) därför att arean och därmed \( \, x \, \) inte kan bli negativ.
Den högra ändan \( \, \sqrt{10} \, \) är parabelns positiva nollställe (se figuren ovan) dvs lösningen till ekvationen \( \, \displaystyle -{x^2 \over 2} + 5 = 0 \).


b)   För att hitta målfunktionens lokala maximum deriverar vi \( \, A(x) \, \) och bestämmer derivatans nollställen:

\[ A(x) \, = \, -\,x^3 \, + \, 10\,x \]
\[ A'(x) \, = \, -\,3\,x^2 \, + \, 10 \]
\[ A''(x) \, = \, -\,6\,x \]




\( \qquad \) Derivatans nollställen:






\( \qquad \) \(\begin{array}{rcrcl} A'(x) & = & -3\,x^2 \, + \, 10 & = & 0 \\ & & 10 & = & 3\,x^2 \\ & & {10 \over 3} & = & x^2 \\ & & x_{1, 2} & = & \sqrt{10 \over 3} \\ & & x_1 & = & 1,83 \\ & & x_2 & = & -1,83 \end{array}\)

\( \quad\; x_2 = -1,83 \, \) förkastas därför att det ligger utanför målfunktionens definitionsmängd \( \, 0 \leq x \leq \sqrt{10} \), se a).

Däremot ligger \( \, x_1 = 1,83 \, \) inom definitionsmängden. Vi sätter in \( \, x_1 \, \) i andraderivatan och använder reglerna om max/min:

\( \qquad\quad A''(1,83) = -6 \cdot 1,83 \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 1,83 \, \).

För \( \, x = 1,83 \, {\rm cm} \, \) antar målfunktionen (rektangelns area) sitt maximum.


c)   För att bestämma rektangelns maximala area sätter vi in \( \, x = 1,83 \, \) i målfunktionen \( \, A(x) \):

\[ A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x \]
\[ A(1,83) = -\,1,83^3 \, + \, 10 \cdot 1,83 \, = \, 12,17 \]
Rektangelns maximala area är \( \, 12,17 \, \).


Exempel 2 Glasskiva (rektangel i triangel)

En glasskiva har formen av en rätvinklig triangel med följande mått i cm:

En glasmästare ska skära ut en rektangulär glasplatta med maximal area ur skivan.

a)   Formulera problemets bivillkor.

b)   Ställ upp problemets målfunktion. Ange dess definitionsmängd.

c)   Bestäm \( \, x \, \) så att glasplattans area \( \, A(x) \, \) maximeras.

d)   Beräkna glasplattans maximala area.

   Ovn 3 2 10 40.jpg


Lösning:

a)   Vi inför beteckningen \( \; {\color{Red} y} \; \) för glasplattans andra sida, så att rektangelns area kan skrivas som \( \; A\,(x, {\color{Red} y}) \; = \; x \; \cdot \; {\color{Red} y} \)

För att skriva om funktionen ovan till en funktion \( \, A\,(x) \, \) av endast en variabel, nämligen \( \, x \, \),

måste \( \, {\color{Red} y} \, \) uttryckas med \( \, x \, \), så att \( \, {\color{Red} y} \, \) kan elimineras.

Sambandet mellan \( \, x \, \) och \( \, {\color{Red} y} \, \) bestäms av rektangelns "rörliga" hörn som är bundet till triangelns hypotenusa.

Vi inför ett koordinatsystem och sätter glasskivan i det, se bilden:

Triangelns hypotenusa blir då en del av en rät linje.

Punkten \( \, (x, y) \, \) rör sig på denna räta linje vars ekvation är:

\[ {\color{Red} y} \, = \, k\,x \, + \, m \]

Lutningen \( \, k \, = \, \displaystyle {\Delta y \over \Delta x} \, = \, - \, {20 \over 30} \, = \, - \, {2 \over 3} \)

Skärningspunkten med \(\,y\)-axeln: \( \quad m \, = \, 20 \)

Den räta linjens ekvation blir då problemets bivillkor:

\( \displaystyle {\color{Red} y} \, = \, - \, {2 \over 3}\,x \, + \, 20 \)
       Ovn 3 2 10a.jpg



b)   Det ovan formulerade bivillkoret för glasskivan sätts in i \( \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; \) för att eliminera \( \, {\color{Red} y} \,\)

     och ställa upp ett uttryck för arean som endast beror av \( \, x \):

\[ A\,(x, \, {\color{Red} y}) \, = \, x \cdot {\color{Red} y} \, = \, x \cdot \left(-\,{2 \over 3}\,x \, + \, 20\right) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
     Målfunktionen är:
\( A\,(x) \, = \, \displaystyle -\,{2 \over 3}\,x^2 \, + \, 20\,x \)
       med definitionsmängden: \( \quad 0 \, \leq \, x \, \leq \, 30 \,\).


c)   För att hitta målfunktionens lokala maximum deriverar vi \( \, A(x) \, \) och bestämmer derivatans nollställen:

\[ A(x) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
\[ A'(x) \, = \, -\,{4 \over 3}\,x \, + \, 20 \]
\[ A''(x) \, = \, -\,{4 \over 3} \]
\( \qquad \) Derivatans nollställen:





\( \qquad \) \(\begin{array}{rcrcl} A'(x) & = & -{4 \over 3}\,x + 20 & = & 0 \\ & & 20 & = & {4 \over 3}\,x \\ & & {20 \, \cdot \, 3 \over 4} & = & x \\ & & x & = & 15 \end{array}\)


     \( \, x = 15 \, \) som ligger inom målfunktionens definitionsmängd, sätts in i andraderivatan enligt reglerna om max/min:

     \( A''(15) = \displaystyle -\,{4 \over 3} \,<\, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 15 \, \).

     För \( \, x = 15 \, {\rm cm} \, \) antar målfunktionen ett maximum, dvs rektangelns area blir maximal.


d)   Eftersom rektangeln får sin största area för \( \, x = 15 \, \) sätter vi in \( \, x = 15 \, \) i målfunktionen för att få största arean:

\[ A\,(x) \, = \, \displaystyle -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
\[ A(15) = -\,{2 \over 3} \cdot 15^2 + 20 \cdot 15 = 150 \]

     Glasplattans största area blir \( \, 150 \, {\rm cm}^2 \, \).


Exempel 3 Konservburk

En cylinderformad konservburk ska produceras av en bit plåt.

Vi antar att cylinderns begränsningsarea blir \( \, 500 \, {\rm cm}^2 \, \) efter spill.

Vilka mått på burken måste väljas så att volymen blir maximal?


a)   Formulera problemets bivillkor.

b)   Ställ upp problemets målfunktion.

c)   Bestäm cylinderns radie och höjd så att burkens volym

blir maximal.
     Konservburk 40a.jpg

 d)   Ange målfunktionens definitionsmängd. Rita graferna till bivillkoret och målfunktionen. Tolka graferna.

 e)   Beräkna konservburkens maximala volym.

 f)    Vilket samband råder mellan cylinderns radie \( \, r \, \) och dess höjd \( \, h \, \) när volymen maximeras?


Lösning:

a)   Begränsningsarean \( \, A \, = \, 2\,\pi\,r\,h \, + 2\,\pi\,r^2 \, = \, 500 \)
\[\begin{array}{rcl} 2\,\pi\,r\,h \, + 2\,\pi\,r^2 & = & 500 \\ 2\,\pi\,r\,h & = & 500 \, - 2\,\pi\,r^2 \\ h & = & {500 - 2\,\pi\,r^2 \over 2\,\pi\,r} \\ h & = & {500 \over 2\,\pi\,r} \, - \, r \, = \, {250 \over \pi\,r} \, - \, r \end{array}\]
       Därmed är bivillkoret:
\( h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \)
      Zylinder01.gif




b)   Cylinderns volym \( \, V \, \) är basytan \( \times \) höjden dvs: \( \qquad\qquad\quad V\,(r, \, {\color{Red} h}) \; = \; \pi \, r^2 \; \cdot \; {\color{Red} h} \, \)


       För att skriva om denna funktion av två variabler till en funktion av endast en variabel,

       sätter vi in bivillkoret från a) i \( \, V\,(r, \, {\color{Red} h}) \, \) och eliminerar \( \, {\color{Red} h} \, \):

\[ V\,(r, \, {\color{Red} h}) \, = \, \pi \, r^2 \; \cdot \; {\color{Red} h} \, = \, \pi\,r^2\cdot \left( {\color{Red} {{250 \over \pi\,r}\,-\, r}} \right) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3 \, = \, 250 \cdot r \, - \, \pi\,r^3 \]


       Därmed är målfunktionen:
\( V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \)


c)   Målfunktionen maximeras:

\[ V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \]
\[ V'(r) \, = \, 250 \, - \, 3\,\pi\,r^2 \]
\[ V''(r) \, = \, -\,6\,\pi\,r \]



\( \qquad \) Derivatans nollställen:





\( \qquad \) \(\begin{array}{rcrcl} V'(r) & = & 250 \, - \, 3\,\pi\,r^2 & = & 0 \\ & & 250 & = & 3\,\pi\,r^2 \\ & & {250 \over 3\,\pi} & = & r^2 \\ & & r_{1, 2} & = & \pm\,\sqrt{250 \over 3\,\pi} \\ & & r & = & 5,15 \end{array}\)

       \( r_2 = -5,15 \, \) förkastas, för radien kan inte bli negativ. \( \, r = 5,15 \, > \, 0 \, \) sätts in i andraderivatan enligt reglerna om max/min:

       \( V''(5,15) = -6 \,\pi\cdot 5,15 \, < \, 0 \quad \Longrightarrow \quad V(r) \, \) har ett lokalt maximum för \( \, r = 5,15 \).

       För att få cylinderns höjd när volymen maximeras sätter vi in \( \, r = 5,15 \, \) i bivillkoret från a):

\[ h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \, = \, {250 \over \pi\cdot 5,15} \, - \, 5,15 \, = \, 10,30 \]

       Cylinderns volym blir maximal för radien \( \quad \boxed{r = 5,15 \; {\rm cm}} \quad \) och höjden \( \quad \boxed{h = 10,30 \; {\rm cm}} \quad \).


d)   För att bestämma målfunktionens definitionsmängd tittar undersöker vi bivillkoret: \( \qquad h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \)

       Av detta framgår att \( \; r \; \) inte får vara \( \, 0 \, \): \( \; r \, \neq \, 0 \; \). Därför är \( \, 0 \, \) en undre gräns: \( \qquad r \, > \, 0 \)

       För att hitta en övre gräns (största möjliga värde) för \( \; r \; \) tittar vi på cylinderns begränsningsarea:

\[ \, A \, = \, 2\,\pi\,r\,h \, + 2\,\pi\,r^2 \, = \, 500 \]

       Pga begränsningsareans konstanta värde \( \, 500 \, \) blir cylinderns radie störst när höjden blir \( \, 0 \, \).

       Därför får vi radiens störst möjliga värde om vi i formeln ovan väljer \( \, h=0 \, \):

\[ \, h = 0 \qquad \Longrightarrow \qquad A \, = \, 2\,\pi \cdot \left(r\right)\,^2 \, = \, 500 \qquad \Longrightarrow \qquad r \, = \, \sqrt{500 \over 2\,\pi} \, = \, 8,92 \]

       Därmed blir målfunktionens definitionsmängd:

\( 0 \; < \; r \; \leq \; 8,92 \)

      Grafen till vänster visar bivillkoret \( h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \) och till höger målfunktionen \( V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \), båda med definitionsmängden ovan.

Konservburk Grafer.jpg

      Målfunktionens graf till höger bekräftar det algebraiska resultatet från c), nämligen att volymen blir maximal för \( \, r = 5,15 \).

      Bivillkorets graf till vänster bekräftar att för \( \, r = 5,15 \, \) höjden blir \( \, \approx \, 10 \) och dessutom att \( \, r \, \) inte kan bli större än \( \, 8,92 \).


e)   Resultaten från c) sätts in i målfunktionen för att få cylinderns största volym:

\[ V(5,15) \, = \, \pi \, \cdot 5,15^2 \, \cdot 10,30 \, = \, 858,23 \]

       Konservburkens maximala volym blir \( \; 858,23 \, {\rm cm}^3 \; \).


f)   Följande samband råder mellan cylinderns radie \( \; r = 5,15 \, {\rm cm} \; \) och dess höjd \( \; h = 10,30 \, {\rm cm}\)

      när volymen till en cylinder med en begränsningsarea på \( \, 500 \, {\rm cm}^2 \, \), maximeras:

\( 2 \; r \; = \; h \)


Återstår frågan som är föremål för undersökning i övning 9, om samma samband även råder generellt mellan radien \( \; r \; \) och höjden \( \; h \; \) för alla konservburkar med vilken begränsningsarea som helst och maximal volym, nämligen:

Diametern \( \; = \; \) Höjden

En annan intressant frågeställning är:

Råder även sambandet ovan om man utgår från en konservburk med fast given volym vars materialåtgång ska minimeras?

En närmare undersökning liknande lösningen till Exempel 3 kommer att visa att detta är fallet.

Dvs sambandet ovan är alltid optimalt ur ekonomisk synpunkt.


Ett ekonomiskt exempel

Se övning 7.




Copyright © 2011-2016 Math Online Sweden AB. All Rights Reserved.