Skillnad mellan versioner av "3.5 Lösning 8b"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
 
Cylinderns volym <math> \, V \, </math> är basytan <math> \times </math> höjden dvs<span style="color:black">:</span> <math> \qquad\qquad\quad V\,(r, \, h) \; = \; \pi \, r^2 \; \cdot \; h \, </math>
 
Cylinderns volym <math> \, V \, </math> är basytan <math> \times </math> höjden dvs<span style="color:black">:</span> <math> \qquad\qquad\quad V\,(r, \, h) \; = \; \pi \, r^2 \; \cdot \; h \, </math>
  
Vi sätter in bivillkoret från a), dvs <math> \, h \, = \, -2\, r + 30 \, </math>, i <math> \, V\,(r, \, h) \, </math>:
+
Vi sätter in bivillkoret från a), dvs <math> \, h = -2\,r + 30 \, </math>, i <math> \, V\,(r, \, h) \, </math>:
  
 
::<math> V\,(r, \, h) \, = \, \pi \, r^2 \; \cdot \; h \, = \, \pi\,r^2\cdot (-2\, r + 30) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3  \, = \, 250 \cdot r  \, - \, \pi\,r^3 </math>
 
::<math> V\,(r, \, h) \, = \, \pi \, r^2 \; \cdot \; h \, = \, \pi\,r^2\cdot (-2\, r + 30) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3  \, = \, 250 \cdot r  \, - \, \pi\,r^3 </math>

Versionen från 3 februari 2015 kl. 21.10

Cylinderns volym \( \, V \, \) är basytan \( \times \) höjden dvs: \( \qquad\qquad\quad V\,(r, \, h) \; = \; \pi \, r^2 \; \cdot \; h \, \)

Vi sätter in bivillkoret från a), dvs \( \, h = -2\,r + 30 \, \), i \( \, V\,(r, \, h) \, \):

\[ V\,(r, \, h) \, = \, \pi \, r^2 \; \cdot \; h \, = \, \pi\,r^2\cdot (-2\, r + 30) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3 \, = \, 250 \cdot r \, - \, \pi\,r^3 \]
Därmed är målfunktionen:
\( V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \)