Skillnad mellan versioner av "3.5 Lösning 6a"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
 +
Vi inför beteckningen <math> \, y \, </math> för sidan av lådans baskvadrat:
 +
 
[[Image: Ovn 356 Oppen lada_1_80_y.jpg]]
 
[[Image: Ovn 356 Oppen lada_1_80_y.jpg]]
 
 
 
Vi inför beteckningen <math> \, y \, </math> för rektangelns andra sida  som är parallell till muren.
 
  
 
Då kan problemets bivillkor formuleras så här:
 
Då kan problemets bivillkor formuleras så här:
  
::<math> y \, = \, 9 \, - \, 2\,x \, </math>
+
::<math> y \, = \, 10 \, - \, 2\,x \, </math>
  
eftersom stängseln är <math> \, 9 \; {\rm m} \, </math> lång varav endast <math> \, 2\,x \, </math> går åt sidorna som är vinkelräta mot muren.
+
eftersom kartongens sida är <math> \, 10 \; {\rm dm} \, </math> lång varav <math> \, 2\,x \, </math> skärs ut, så att <math> \, y \, </math> blir bassidan av den öppna lådan som ska byggas.

Versionen från 2 februari 2015 kl. 10.40

Vi inför beteckningen \( \, y \, \) för sidan av lådans baskvadrat:

Ovn 356 Oppen lada 1 80 y.jpg

Då kan problemets bivillkor formuleras så här:

\[ y \, = \, 10 \, - \, 2\,x \, \]

eftersom kartongens sida är \( \, 10 \; {\rm dm} \, \) lång varav \( \, 2\,x \, \) skärs ut, så att \( \, y \, \) blir bassidan av den öppna lådan som ska byggas.