Skillnad mellan versioner av "3.5 Extremvärdesproblem"

Från Mathonline
Hoppa till: navigering, sök
m
m (Exempel 1 Glasskiva)
Rad 67: Rad 67:
 
Denna ekvation är det önskade sambandet mellan <math> \, x \, </math> och <math> \, {\color{Red} y} \,</math>.
 
Denna ekvation är det önskade sambandet mellan <math> \, x \, </math> och <math> \, {\color{Red} y} \,</math>.
  
Inom [http://sv.wikipedia.org/wiki/Optimeringsl%C3%A4ra <strong><span style="color:blue">optimeringslära</span></strong>] <math>-</math> den matematiska disciplin som sysslar med optimering (maximering och minimering) av funktioner <math>-</math> kallas det erhållna sambandet problemets <strong><span style="color:red">bivillkor</span></strong> (eng. <i>constraint</i>).
+
Inom [http://sv.wikipedia.org/wiki/Optimeringsl%C3%A4ra <strong><span style="color:blue">optimeringslära</span></strong>] <math>-</math> den matematiska disciplin som sysslar med optimering (maximering och minimering) av funktioner <math>-</math> kallas det erhållna sambandet för problemets <strong><span style="color:red">bivillkor</span></strong> (eng. <i>constraint</i>).
  
 
Bivillkoret sätts in i <math> \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; </math> för att eliminera <math> \, {\color{Red} y} \,</math> och ställa upp ett uttryck för arean som endast beror av <math> \, x </math>:
 
Bivillkoret sätts in i <math> \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; </math> för att eliminera <math> \, {\color{Red} y} \,</math> och ställa upp ett uttryck för arean som endast beror av <math> \, x </math>:
Rad 73: Rad 73:
 
::<math> A\,(x, {\color{Red} y}) \, = \, x \cdot {\color{Red} y} \, = \, x \cdot \left(-\,{2 \over 3}\,x \, + \, 20\right) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x </math>
 
::<math> A\,(x, {\color{Red} y}) \, = \, x \cdot {\color{Red} y} \, = \, x \cdot \left(-\,{2 \over 3}\,x \, + \, 20\right) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x </math>
  
I [http://sv.wikipedia.org/wiki/Optimeringsl%C3%A4ra <strong><span style="color:blue">optimeringslära</span></strong>] kallas den erhållna funktionen av <u>en</u> variabel problemets <strong><span style="color:red">målfunktion</span></strong> (eng. <i>objective function</i>):
+
I optimeringslära kallas den erhållna funktionen av <u>en</u> variabel för problemets <strong><span style="color:red">målfunktion</span></strong> (eng. <i>objective function</i>):
  
 
<div style="border:1px solid black;
 
<div style="border:1px solid black;
Rad 87: Rad 87:
  
  
b) &nbsp; Resten av uppgiften kan lösas med de metoder vi lärt oss i förra avsnitten.
+
b) &nbsp; Resten av uppgiften kan lösas med de metoder vi lärt oss i de förra avsnitten.

Versionen från 26 januari 2015 kl. 09.15

       <-- Förra avsnitt          Teori          Övningar          --> Nästa avsnitt      


Lektion 33 Extremvärdesproblem I

Lektion 34 Extremvärdesproblem II


Exempel 1 Glasskiva

En glasskiva har formen av en rätvinklig triangel med följande mått i cm:

Ovn 3 2 10 40.jpg

Ur skivan ska en rektangulär glasplatta skäras ut så att glasplattans area \( \, A(x) \, \) blir maximal.

a)   Ställ upp arean \( \, A(x) \, \) som en funktion som endast beror av \( \, x \, \).

b)   Bestäm \( \, x \, \) så att funktionen \( \, A(x) \, \) antar sitt maximum.

c)   Beräkna glasplattans maximala area.

Lösning:

a)   Vi inför beteckningen \( \; {\color{Red} y} \; \) för glasplattans andra sida, så att rektangelns area kan skrivas som:

\[ A\,(x, {\color{Red} y}) \; = \; x \; \cdot \; {\color{Red} y} \]

Men \( \, A\,(x, \, {\color{Red} y}) \, \) är en funktion av två variabler som vi inte kan jobba med. För att skriva om den till en funktion av endast en variabel, nämligen \( \, x \, \), måste vi hitta ett samband mellan \( \, x \, \) och \( \, {\color{Red} y} \, \). Dvs \( \, {\color{Red} y} \, \) måste uttryckas med \( \, x \, \) och på så sätt elimineras.

Detta samband bestäms rektangelns "fria" hörn som är bunden till triangelns hypotenusa. Det hörnet måste ju alltid ligga på hypotenusan.

Vi inför ett koordinatsystem och sätter glasskivan i det, så här:

Triangelns hypotenusa blir del av en rät linje med negativ lutning.

Punkten \( \, (x, y) \, \) rör sig på denna räta linje.

Den räta linjens ekvation i \(\,k\)-form:

\[ {\color{Red} y} \, = \, k\,x \, + \, m \]

Lutningen \( \, k \, = \, \displaystyle {\Delta y \over \Delta x} \, = \, - \, {20 \over 30} \, = \, - \, {2 \over 3} \)

Skärningspunkten med \(\,y\)-axeln: \( \quad m \, = \, 20 \)

Den räta linjens ekvation blir då:
\( \displaystyle {\color{Red} y} \, = \, - \, {2 \over 3}\,x \, + \, 20 \)
Ovn 3 2 10a.jpg

Denna ekvation är det önskade sambandet mellan \( \, x \, \) och \( \, {\color{Red} y} \,\).

Inom optimeringslära \(-\) den matematiska disciplin som sysslar med optimering (maximering och minimering) av funktioner \(-\) kallas det erhållna sambandet för problemets bivillkor (eng. constraint).

Bivillkoret sätts in i \( \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; \) för att eliminera \( \, {\color{Red} y} \,\) och ställa upp ett uttryck för arean som endast beror av \( \, x \):

\[ A\,(x, {\color{Red} y}) \, = \, x \cdot {\color{Red} y} \, = \, x \cdot \left(-\,{2 \over 3}\,x \, + \, 20\right) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]

I optimeringslära kallas den erhållna funktionen av en variabel för problemets målfunktion (eng. objective function):

\( A\,(x) \, = \, \displaystyle -\,{2 \over 3}\,x^2 \, + \, 20\,x \)

I vårt exempel gäller det att maximera denna målfunktion.

Extremvärdesproblem består i regel av ett eller flera bivillkor och en målfunktion, där bivillkoren används för att reducera målfunktionen till en funktion av endast en variabel.



b)   Resten av uppgiften kan lösas med de metoder vi lärt oss i de förra avsnitten.