Skillnad mellan versioner av "3.5 Extremvärdesproblem"

Från Mathonline
Hoppa till: navigering, sök
m
m (Exempel 1 Glasskiva)
Rad 28: Rad 28:
  
 
c) Beräkna glasplattans maximala area.
 
c) Beräkna glasplattans maximala area.
 
  
 
'''Lösning:'''
 
'''Lösning:'''
Rad 40: Rad 39:
 
Men här är <math> \, A\,(x, {\color{Red} y}) \, </math> en funktion av två variabler som vi inte kan jobba med. För att skriva om den till en funktion av endast en variabel, nämligen <math> \, x \, </math>, måste vi hitta ett samband mellan <math> \, x \, </math> och <math> \, {\color{Red} y} \, </math>. Dvs <math> \, {\color{Red} y} \, </math> måste uttryckas med <math> \, x \, </math> och på så sätt elimineras.
 
Men här är <math> \, A\,(x, {\color{Red} y}) \, </math> en funktion av två variabler som vi inte kan jobba med. För att skriva om den till en funktion av endast en variabel, nämligen <math> \, x \, </math>, måste vi hitta ett samband mellan <math> \, x \, </math> och <math> \, {\color{Red} y} \, </math>. Dvs <math> \, {\color{Red} y} \, </math> måste uttryckas med <math> \, x \, </math> och på så sätt elimineras.
  
Detta samband bestäms rektangelns "fria" hörn som är bunden till triangelns hypotenusa. Det hörnet måste ju alltid ligga på hypotenusan. Men hur kan vi beskriva detta algebraiskt?
+
Detta samband bestäms rektangelns "fria" hörn som är bunden till triangelns hypotenusa. Det hörnet måste ju alltid ligga på hypotenusan.
 
+
Vi inför ett koordinatsystem och sätter glasskivan i det, så här:
+
  
[[Image: Ovn 3_2_10a.jpg]]
+
<table>
 +
<tr>
 +
  <td>Vi inför ett koordinatsystem och sätter glasskivan i det:
  
 
På så sätt blir hypotenusan del av en rät linje med negativ lutning. Vi kallar rektangelns andra sida för <math> \, y \,</math>. Punkten <math> \, (x, y) \, </math> rör sig på denna rät linje.
 
På så sätt blir hypotenusan del av en rät linje med negativ lutning. Vi kallar rektangelns andra sida för <math> \, y \,</math>. Punkten <math> \, (x, y) \, </math> rör sig på denna rät linje.
Rad 63: Rad 62:
  
 
::<math> y \, = \, - \, {2 \over 3}\,x \, + \, 20 </math>
 
::<math> y \, = \, - \, {2 \over 3}\,x \, + \, 20 </math>
 +
</td>
 +
  <td>:::[[Image: Ovn 3_2_10a.jpg]]</td>
 +
</tr>
 +
</table>
  
 
Denna ekvation kan uppfattas som det samband mellan <math> \, y \,</math> och <math> \, x \, </math> som bestäms av att rektangelns "fria" hörn är bunden till rektangelns hypotenusa.
 
Denna ekvation kan uppfattas som det samband mellan <math> \, y \,</math> och <math> \, x \, </math> som bestäms av att rektangelns "fria" hörn är bunden till rektangelns hypotenusa.

Versionen från 25 januari 2015 kl. 14.17

       <-- Förra avsnitt          Teori          Övningar          --> Nästa avsnitt      


Lektion 33 Extremvärdesproblem I

Lektion 34 Extremvärdesproblem II


Exempel 1 Glasskiva

En glasskiva har formen av en rätvinklig triangel med följande mått i cm:

Ovn 3 2 10 40.jpg

Ur skivan ska en rektangulär glasplatta skäras ut så att glasplattans area \( \, A(x) \, \) blir maximal.

a) Ställ upp arean \( \, A(x) \, \) som en funktion som endast beror av \( \, x \, \).

b) Bestäm \( \, x \, \) så att funktionen \( \, A(x) \, \) antar sitt maximum.

c) Beräkna glasplattans maximala area.

Lösning:

a)  

Vi inför beteckningen \( \; {\color{Red} y} \; \) för glasplattans andra sida, så att rektangelns area kan skrivas som:

\[ A\,(x, {\color{Red} y}) \; = \; x \; \cdot \; {\color{Red} y} \]

Men här är \( \, A\,(x, {\color{Red} y}) \, \) en funktion av två variabler som vi inte kan jobba med. För att skriva om den till en funktion av endast en variabel, nämligen \( \, x \, \), måste vi hitta ett samband mellan \( \, x \, \) och \( \, {\color{Red} y} \, \). Dvs \( \, {\color{Red} y} \, \) måste uttryckas med \( \, x \, \) och på så sätt elimineras.

Detta samband bestäms rektangelns "fria" hörn som är bunden till triangelns hypotenusa. Det hörnet måste ju alltid ligga på hypotenusan.

Vi inför ett koordinatsystem och sätter glasskivan i det:

På så sätt blir hypotenusan del av en rät linje med negativ lutning. Vi kallar rektangelns andra sida för \( \, y \,\). Punkten \( \, (x, y) \, \) rör sig på denna rät linje.

Den räta linjens ekvation i \(\,k\)-form:

\[ y \, = \, k\,x \, + \, m \]

Lutningen \( \, k \, \):

\[ k \, = \, {\Delta y \over \Delta x} \, = \, - \, {20 \over 30} \, = \, - \, {2 \over 3} \]

Skärningspunkten med \(\,y\)-axeln:

\[ m \, = \, 20 \]

Den räta linjens ekvation blir då:

\[ y \, = \, - \, {2 \over 3}\,x \, + \, 20 \]
:::Ovn 3 2 10a.jpg

Denna ekvation kan uppfattas som det samband mellan \( \, y \,\) och \( \, x \, \) som bestäms av att rektangelns "fria" hörn är bunden till rektangelns hypotenusa.

Vi använder sambandet ovan för att ställa upp ett uttryck för arean \( \, A(x) \, \) som endast beror av \( \, x \):

\[ A(x) \, = \, x \cdot y \, = \, x \cdot (-\,{2 \over 3}\,x \, + \, 20) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]