Skillnad mellan versioner av "3.4 Lösning 7a"
Taifun (Diskussion | bidrag) |
Taifun (Diskussion | bidrag) m |
||
Rad 19: | Rad 19: | ||
x_{1, 2} & = & -\,{b \over 3\,a}\,\pm\,\sqrt{{b^2 \over 9\,a^2}\,-\,{c \over 3\,a}} | x_{1, 2} & = & -\,{b \over 3\,a}\,\pm\,\sqrt{{b^2 \over 9\,a^2}\,-\,{c \over 3\,a}} | ||
\end{array}</math> | \end{array}</math> | ||
+ | ---- | ||
Om derivatan ska ha endast ett nollställe och därmed funktionen endast ett lokalt extremum, måste uttrycket under roten bli <math> \, 0 \, </math>: | Om derivatan ska ha endast ett nollställe och därmed funktionen endast ett lokalt extremum, måste uttrycket under roten bli <math> \, 0 \, </math>: |
Versionen från 24 januari 2015 kl. 11.29
Den allmänna formen till en 3:e gradsfunktion är:
- \[ y = a\,x^3 \, + \, b\,x^2 \, + \, c\,x \, + \, d \]
med \( \; a,\, b,\, c,\, d = \) konstanter.
"Går genom origo" \( \quad \Longrightarrow \quad d = 0 \, \).
Vi har:
- \[\begin{array}{rcl} y & = & a\,x^3 \, + \, b\,x^2 \, + \, c\,x \\ y\,' & = & 3\,a\,x^2 \, + \, 2\,b\,x \, + \, c \end{array}\]
För att få reda på lokala extrema sätter vi derivatan till \( \, 0 \, \) och löser ekvationen, varvid \( \, a,\, b,\, c \, \) behandlas som konstanter:
- \[\begin{array}{rcl} 3\,a\,x^2 + 2\,b\,x + c & = & 0 \\ x^2 + {2\,b \over 3\,a}\,x + {c \over 3\,a} & = & 0 \\ x_{1, 2} & = & -\,{b \over 3\,a}\,\pm\,\sqrt{{b^2 \over 9\,a^2}\,-\,{c \over 3\,a}} \end{array}\]
Om derivatan ska ha endast ett nollställe och därmed funktionen endast ett lokalt extremum, måste uttrycket under roten bli \( \, 0 \, \):
- \[ {b^2 \over 9\,a^2} \, = \, {c \over 3\,a} \]
Vi multiplicerar båda leden med \( \, 9\,a^2 \, \):
- \[ b^2 \, = \, 3\,a\,c \]
Detta samband mellan konstanterna \( \, a,\, b,\, c \, \) måste gälla för att funktionen ska ha endast ett lokalt extremum. Det finns oändligt många möjligheter. Vi väljer \( \, a \, = \, 3 \, \) och \( \, c \, = \, 1 \, \) varav följer \( \, b \, = \, 3 \, \). Detta ger funktionen:
- \[ y \, = \, 3\,x^3 \, + \, 3\,x^2 \, + \, x \]