Skillnad mellan versioner av "2.4 Lösning 4b"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
 
:<math> y = {x^2\,\sqrt{x}\over 5} = {1 \over 5}\cdot x^2\,\sqrt{x} = {1 \over 5}\cdot x^2\cdot x^{1 \over 2} = {1 \over 5}\cdot x^{2+{1 \over 2}} = {1 \over 5}\cdot x^{5 \over 2} </math>
 
:<math> y = {x^2\,\sqrt{x}\over 5} = {1 \over 5}\cdot x^2\,\sqrt{x} = {1 \over 5}\cdot x^2\cdot x^{1 \over 2} = {1 \over 5}\cdot x^{2+{1 \over 2}} = {1 \over 5}\cdot x^{5 \over 2} </math>
 +
  
 
:<math> y\,' = {5 \over 2}\cdot {1 \over 5}\cdot x^{{5 \over 2}-1} = {1 \over 2}\cdot x^{3 \over 2} = {1 \over 2}\cdot \sqrt{x^3} = {1 \over 2}\cdot x\,\sqrt{x} = {x\,\sqrt{x}\over 2} </math>
 
:<math> y\,' = {5 \over 2}\cdot {1 \over 5}\cdot x^{{5 \over 2}-1} = {1 \over 2}\cdot x^{3 \over 2} = {1 \over 2}\cdot \sqrt{x^3} = {1 \over 2}\cdot x\,\sqrt{x} = {x\,\sqrt{x}\over 2} </math>

Versionen från 17 oktober 2014 kl. 14.26

\[ y = {x^2\,\sqrt{x}\over 5} = {1 \over 5}\cdot x^2\,\sqrt{x} = {1 \over 5}\cdot x^2\cdot x^{1 \over 2} = {1 \over 5}\cdot x^{2+{1 \over 2}} = {1 \over 5}\cdot x^{5 \over 2} \]


\[ y\,' = {5 \over 2}\cdot {1 \over 5}\cdot x^{{5 \over 2}-1} = {1 \over 2}\cdot x^{3 \over 2} = {1 \over 2}\cdot \sqrt{x^3} = {1 \over 2}\cdot x\,\sqrt{x} = {x\,\sqrt{x}\over 2} \]