Skillnad mellan versioner av "1.5a Lösning 10a"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | <math> f(x) = {3\,x^2 + 12\,x + 12 \over x^2 - 4} = {3\,(x^2 + 4\,x + 4) \over (x + 2)\,(x - 2)} = {3\,(x + 2)^2 \over (x + 2)\,(x - 2)} = </math> | + | :<math> f(x) = {3\,x^2 + 12\,x + 12 \over x^2 - 4} = {3\,(x^2 + 4\,x + 4) \over (x + 2)\,(x - 2)} = {3\,(x + 2)^2 \over (x + 2)\,(x - 2)} = </math> |
Rad 6: | Rad 6: | ||
::::::<math> \Downarrow </math> | ::::::<math> \Downarrow </math> | ||
− | :<math> x_1 = -2 {\color{White} x} | + | :<math> x_1 = -2 {\color{White} x} \quad {\rm är\;en\;hävbar\;diskontinuitet.} </math> |
− | :<math> x_2 = 2 \, {\color{White} xx} | + | :<math> x_2 = 2 \, {\color{White} {xx}} \quad {\rm är\;en\;icke-hävbar\;diskontinuitet.} </math> |
Versionen från 16 augusti 2014 kl. 20.00
\[ f(x) = {3\,x^2 + 12\,x + 12 \over x^2 - 4} = {3\,(x^2 + 4\,x + 4) \over (x + 2)\,(x - 2)} = {3\,(x + 2)^2 \over (x + 2)\,(x - 2)} = \]
\( = {3\,{\color{Red}(x + 2)}\,(x + 2) \over {\color{Red}(x + 2)}\,(x - 2)} = {3\,(x + 2) \over (x - 2)} \)
- \[ \Downarrow \]
\[ x_1 = -2 {\color{White} x} \quad {\rm är\;en\;hävbar\;diskontinuitet.} \]
\[ x_2 = 2 \, {\color{White} {xx}} \quad {\rm är\;en\;icke-hävbar\;diskontinuitet.} \]