Skillnad mellan versioner av "1.1 Lösning 4c"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(3 mellanliggande versioner av samma användare visas inte)
Rad 3: Rad 3:
 
[[Image: Rotekv_kvadrerad_Övn_4c.jpg]]
 
[[Image: Rotekv_kvadrerad_Övn_4c.jpg]]
  
Bilden visar att kurvorna <math> \displaystyle y_1 = x^2 + 1 </math> (blå) och <math> \displaystyle y_2 = (x - 3)^2 </math> (grön) skär varandra i en punkt.
+
Bilden visar att kurvorna <math> \displaystyle y_1 = x^2 + 1 </math> (blå) och <math> \displaystyle y_2 = (x - 3)^2 </math> (grön) skär varandra i en punkt. Detta innebär att ekvationen
  
Detta innebär att ekvationen
+
<math> \displaystyle x^2 + 1 = (x - 3)^2 </math>
  
<math> x^2 + 1 = (x - 3)^2 </math>
+
har en lösning som kan avläsas från grafen till ca. <math> \displaystyle x \approx 1,3 </math>. Men denna ekvation uppstår när man kvadrerar den ursprungliga rotekvationen
  
har en lösning
+
<math> \sqrt{x^2 + 1} = x - 3 </math>
  
<!-- vilket visades i lösningen till [[1.1 Lösning 4a|övning 4a]]. -->
+
Dvs den kvadrerade ekvationen har en lösning som är den ursprungliga rotekvationens falska rot som är exakt <math> \displaystyle x = {4 \over 3} </math> vilket visades i lösningen till [[1.1 Lösning 4a|övning 4a]].

Nuvarande version från 21 november 2010 kl. 14.27

Graferna till y1=x2+1 och y2=(x3)2 ritade i samma koordinatsystem:

Rotekv kvadrerad Övn 4c.jpg

Bilden visar att kurvorna y1=x2+1 (blå) och y2=(x3)2 (grön) skär varandra i en punkt. Detta innebär att ekvationen

x2+1=(x3)2

har en lösning som kan avläsas från grafen till ca. x1,3. Men denna ekvation uppstår när man kvadrerar den ursprungliga rotekvationen

x2+1=x3

Dvs den kvadrerade ekvationen har en lösning som är den ursprungliga rotekvationens falska rot som är exakt x=43 vilket visades i lösningen till övning 4a.