Skillnad mellan versioner av "2.4 Lösning 4b"

Från Mathonline
Hoppa till: navigering, sök
m (Created page with "<math> y = {x^2\,\sqrt{x}\over 5} </math>")
 
m
 
(7 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
<math> y = {x^2\,\sqrt{x}\over 5} </math>
+
:<math> y = {x^2\,\sqrt{x}\over 5} = {1 \over 5}\cdot x^2\,\sqrt{x} = {1 \over 5}\cdot x^2\cdot x^{1 \over 2} = {1 \over 5}\cdot x^{2+{1 \over 2}} = {1 \over 5}\cdot x^{5 \over 2} </math>
 +
 
 +
:<math> y\,' = {5 \over 2}\cdot {1 \over 5}\cdot x^{{5 \over 2}-1} = {1 \over 2}\cdot x^{3 \over 2} = {1 \over 2}\cdot \sqrt{x^3} = {1 \over 2}\cdot x\,\sqrt{x} = {x\,\sqrt{x}\over 2} </math>

Nuvarande version från 18 oktober 2014 kl. 10.56

\[ y = {x^2\,\sqrt{x}\over 5} = {1 \over 5}\cdot x^2\,\sqrt{x} = {1 \over 5}\cdot x^2\cdot x^{1 \over 2} = {1 \over 5}\cdot x^{2+{1 \over 2}} = {1 \over 5}\cdot x^{5 \over 2} \]

\[ y\,' = {5 \over 2}\cdot {1 \over 5}\cdot x^{{5 \over 2}-1} = {1 \over 2}\cdot x^{3 \over 2} = {1 \over 2}\cdot \sqrt{x^3} = {1 \over 2}\cdot x\,\sqrt{x} = {x\,\sqrt{x}\over 2} \]