Skillnad mellan versioner av "1.5 Lösning 1b"

Från Mathonline
Hoppa till: navigering, sök
m (Created page with "<math> {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot (2\,x)^{-1} =...")
 
m
 
(En mellanliggande version av samma användare visas inte)
Rad 1: Rad 1:
<math> {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot (2\,x)^{-1} = </math>
+
<math> \displaystyle {{2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} = } </math>
  
  
<math> = {2\,x^3 \over 3} \cdot {1 \over 2\,x} =  {2\,x^3 \cdot 1 \over 3 \cdot 2\,x} =  {x^2 \over 3}</math>
+
<math> \displaystyle {= {2\,x^3 \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot {1 \over 2\,x} =  {2\,x^3 \cdot 1 \over 3 \cdot 2\,x} =  {x^2 \over 3} } </math>

Nuvarande version från 24 mars 2015 kl. 23.11

\( \displaystyle {{2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} = {2\,x^{-5-(-8)} \over 3} \cdot (2\,x)^{-1} = {2\,x^{-5+8} \over 3} \cdot (2\,x)^{-1} = } \)


\( \displaystyle {= {2\,x^3 \over 3} \cdot (2\,x)^{-1} = {2\,x^3 \over 3} \cdot {1 \over 2\,x} = {2\,x^3 \cdot 1 \over 3 \cdot 2\,x} = {x^2 \over 3} } \)