Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(9 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Polynom| <<&nbsp;&nbsp;Tillbaka till Polynom]]}}
+
{{Not selected tab|[[Repetitioner från Matte 2| <<&nbsp;&nbsp;Repetitioner]]}}
 
{{Selected tab|[[Potenser|Genomgång]]}}
 
{{Selected tab|[[Potenser|Genomgång]]}}
 
{{Not selected tab|[[Övningar till Potenser|Övningar]]}}
 
{{Not selected tab|[[Övningar till Potenser|Övningar]]}}
 +
{{Not selected tab|[[1.1 Polynom|1:a avsnitt: Polynom&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
Rad 11: Rad 12:
  
 
<big>Potenser är ett repeterande underavsnitt i avsnittet [[1.1 Polynom|<b><span style="color:blue">Polynom</span></b>]]. Övningar till Potenser finns separat i fliken ovan.</big>
 
<big>Potenser är ett repeterande underavsnitt i avsnittet [[1.1 Polynom|<b><span style="color:blue">Polynom</span></b>]]. Övningar till Potenser finns separat i fliken ovan.</big>
 
  
 
== <b><span style="color:#931136">Repetition om potenser</span></b> ==
 
== <b><span style="color:#931136">Repetition om potenser</span></b> ==
Rad 50: Rad 50:
  
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 +
 +
För att förstå den snabbare lösningen se [[Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
 
</big>
 
</big>
 
</div>  <!-- exempel1 -->
 
</div>  <!-- exempel1 -->
  
  
<big>
+
<big>Generellt:</big>
För att förstå den snabbare lösningen måste man känna till:
+
</big>
+
  
== <b><span style="color:#931136">Potenslagarna</span></b> ==
+
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
  
<big>
+
<div class="ovnE">
Följande lagar gäller för potenser där basernna <math> \, a,\,b \, </math> är tal <math> \, \neq 0 \, </math> och exponenterna <math> \, x,\,y \, </math> är godtyckliga tal:
+
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> med <b><span style="color:red">positiv</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
</big>
+
 
 +
:::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
 +
 
 +
:::::<big><math> \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 +
</div>
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenslagarna</span></b> ==
  
  
Rad 79: Rad 86:
 
----
 
----
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
</div> <!-- border-divblue -->
+
</div>
  
 
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
 
  
 
<big>
 
<big>
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> med <b><span style="color:red">positiv</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
+
Dessa lagar gäller för potenser där baserna <math> \, a,\,b \, </math> är tal <math> \, \neq 0 \, </math> och exponenterna <math> \, x,\,y \, </math> är godtyckliga tal.
 
+
</big>
:::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
+
  
:::::<big><math> \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 
</big>
 
  
 
<div class="exempel"> <!-- exempel2 -->
 
<div class="exempel"> <!-- exempel2 -->
Rad 128: Rad 130:
  
 
<big>
 
<big>
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger inte för negativa exponenter.
+
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten <math> \, 0 \, </math>:
  
Antalet multiplikationer av basen med sig själv kan inte vara negativt. Det behövs en ny definition.
+
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller <math> \, 0 \, </math>. Det behövs nya definitioner resp. slutsatser.
 
</big>
 
</big>
  
  
== <b><span style="color:#931136">Potenser med negativa exponenter: Hur räknar du?</span></b> ==
+
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 
<div class="exempel">
 
<div class="exempel">
 
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 
[[Image: Hur raknar du negativa exponenter 20.jpg]]
</div>  <!-- exempel -->
+
</div>
  
  
<big>
+
<table>
Felet beror på att två olika räkneoperationer blandas ihop: multiplikation med "upphöjt till" eller att man inte vet vad minustecknet i exponenten betyder.
+
<tr>
 +
  <td><div class="ovnC">
 +
<big>Potens med negativ exponent<span style="color:black">:</span>
  
<math> \, 2\,^{\color{Red} {-3}} \, </math> betyder inte <math> \, 2 \cdot (-3) \, </math> och inte heller <math> \, {\color{Red} -} 2\,^{\color{Red} 3} \, </math> utan:
+
<math> \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
</big>
+
  
<div class="border-divblue">
+
<b><span style="color:red">Invertera</span></b> potensen med positiv exponent.
<big>
+
::<math> \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
+
  
<b><span style="color:#931136">Potens med negativ exponent</span></b> = upprepad <b><span style="color:red">division</span></b> av <math> \, 1 \, </math> med basen <math> \, 2 </math>, <math> \, {\color{Red} 3} \, </math> gånger.
+
----
  
Eller<span style="color:black">:</span> <math> \qquad\qquad\qquad\qquad\qquad\; </math> upprepad multiplikation med basens <b><span style="color:red">invers</span></b> <math> \displaystyle \frac{1}{2} </math>, <math> \, {\color{Red} 3} \, </math> gånger.
+
Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} \; </math>.
 
+
<b><span style="color:#931136">Negativ exponent</span></b> innebär att <b><span style="color:red">invertera</span></b> potensen med positiv exponent.
+
 
</big></div>
 
</big></div>
  
  
<div class="ovnE">
+
</td>
<big>Andra exempel<span style="color:black">:</span> <math> \qquad\qquad\qquad </math> Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} </math></big>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">
 +
<big>Andra exempel<span style="color:black">:</span></big>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
  
Rad 166: Rad 166:
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
</div>
 
</div>
 +
</td>
 +
</tr>
 +
</table>
  
 
+
<big>Generellt:</big>
<big>Generellt:
+
 
+
 
+
Potensen <big><math> \, a\,^{\color{Red} {-x}} \, </math></big> med <b><span style="color:red">negativ</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
+
 
+
:::<b>Upprepad <span style="color:red">division</span> av <math> \, 1 \, </math> med basen <big><math> \, a \, </math></big> (eller multiplikation med <math> \, \displaystyle \frac{1}{a} \, </math>), <math> \, {\color{Red} x} \, </math> gånger:</b>
+
 
+
:<big><math> \displaystyle a\,^{\color{Red} {-x}} \; = \; 1 \, / \, \underbrace{a \, / \, a \, / \, a \, / \quad \ \cdots \quad / a}_{{\color{Red} x}\;{\rm gånger}} \quad {\color{Red} =} \quad 1 \cdot \underbrace{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \quad \cdot \cdots \quad \cdot \frac{1}{a}}_{{\color{Red} x}\;{\rm gånger}} \; = \; {1 \over a^x}</math></big>
+
 
+
Övergången från division till multiplikation (den <span style="color:red">röda</span> likheten) kan motiveras så här:
+
 
+
Uppfattar man <big><math> \, a \, </math></big> som ett bråk med nämnaren <big><math> \, 1 \, </math></big> dvs <math> \, \displaystyle \frac{a}{1} </math>, kan man ersätta divisionerna med multiplikationer med det inversa <math> \, \displaystyle \frac{1}{a} </math>.
+
 
+
I [http://mathonline.se:1800/index.php?title=1.5_Br%C3%A5kr%C3%A4kning#Multiplikation_och_division <b><span style="color:blue">Bråkräkning</span></b>] hade vi lärt oss att division med ett bråk kan skrivas som en multiplikation med det inversa bråket.
+
 
+
 
+
I de följande två påståendena ska gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
+
</big>
+
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 205: Rad 190:
 
</div>
 
</div>
  
 +
 +
== <b><span style="color:#931136">Potenser med exponenten <math> \, 0 \, </math></span></b> ==
 +
 +
<big>Exempel:</big>
 +
 +
<div class="ovnE">
 +
<big><math> \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad </math>
 +
</big></div>
 +
 +
 +
<big>Generellt:</big>
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 229: Rad 225:
  
  
<big>
+
<big>I båda föregående påståenden ska alltid gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan (Potens <math> \; = \; </math> upprepad multiplikation):
+
 
 +
 
 +
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
 +
 
 +
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
 +
 
 +
<b><span style="color:red">Nollte potensen</span></b> bildar övergången mellan positiva och negativa exponenter, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal:
 
</big>
 
</big>
  
Rad 263: Rad 265:
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
<div class="tolv"> <!-- tolv6 -->
 
<div class="tolv"> <!-- tolv6 -->
Potenser med exponenter som är [[1.1_Om_tal#Olika_typer_av_tal|<b><span style="color:red">rationella tal</span></b>]] (bråktal) är ett annat sätt att skriva rötter.
+
Potenser med [[1.1_Talbegreppet#Olika_typer_av_tal|<b><span style="color:blue">rationella</span></b>]] exponenter (bråktal) är ett annat sätt att skriva rötter.
 
+
Därför kan de användas för att beräkna både kvadratrötter och högre rötter.
+
  
 
Följande samband råder mellan potenser med rationella exponenter och rötter:
 
Följande samband råder mellan potenser med rationella exponenter och rötter:
Rad 358: Rad 358:
 
</div> <!-- tolv7 -->
 
</div> <!-- tolv7 -->
  
 
== <b><span style="color:#931136">Blandade exempel</span></b> ==
 
[[Image: Potens_Ex_1.jpg]]
 
 
----
 
 
[[Image: Potens_Ex_2.jpg]]
 
 
----
 
 
[[Image: Potens_Ex_3.jpg]]
 
  
  
Rad 389: Rad 378:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2017 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2010-2018 Math Online Sweden AB. All Rights Reserved.

Nuvarande version från 22 januari 2019 kl. 11.15

        <<  Repetitioner          Genomgång          Övningar          1:a avsnitt: Polynom  >>      


Potenser är ett repeterande underavsnitt i avsnittet Polynom. Övningar till Potenser finns separat i fliken ovan.

Repetition om potenser

Potens Bas Exponent 80.jpg            

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


OBS!   Förväxla inte begreppen: \( \, 2\,^3 \, \) är själva potensen, medan \( \, {\color{Red} 3} \, \) är exponenten och \( \, {\color{green} 2}\, \) förstås basen.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Potenslagarna

Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \)

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).


      

Andra exempel:

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]

Generellt:

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \( \, 0 \, \)

Exempel:

\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)


Generellt:

Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Potenser med rationella exponenter (bråktal) är ett annat sätt att skriva rötter.

Följande samband råder mellan potenser med rationella exponenter och rötter:

Påstående:

Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)

Bevis:

Vi multiplicerar \( a \)\(^{1 \over 2} \) två gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a \)

Å andra sidan är definitionen för kvadratroten ur \( \, a \):

\( \qquad\quad \displaystyle \sqrt{a} \; = \; \) Tal som 2 gånger multiplicerat med sig själv ger \( \, a \).

Av raderna ovan följer:

\( \displaystyle a^{1 \over 2} \; = \; \sqrt{a} \)


I följande ska alltid gälla: \( \quad m, n \, \) heltal och \( \, n \, \neq 0 \quad \).

Påstående:

Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)

Bevisidé:

Vi visar påståendet för specialfallet \( \, n=3 \):

Vi multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Å andra sidan är definitionen för 3:e roten ur \( \, a \):

\( \qquad\quad \displaystyle \sqrt[3]{a} \; = \; \) Tal som 3 gånger multiplicerat med sig själv ger \( \, a \).

Av raderna ovan följer:

\( \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} \)

Denna bevisidé kan vidareutvecklas till det allmänna fallet:

Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas för potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas för potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen.

Potensekvationer löses genom rotdragning.

Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.

För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt med potens med rationell exponent:

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \qquad & | \; \text{3:e potenslagen på VL} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

De alternativa lösningarna av ekvationen ovan är ett exempel på att rötter alltid kan skrivas som potenser med rationella exponenter.



Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2018 Math Online Sweden AB. All Rights Reserved.