Skillnad mellan versioner av "1.7 Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(24 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.3 Decimaltal| <math> \pmb{\gets} </math> Förra demoavsnitt]]}}
+
{{Not selected tab|[[1.5 Bråkräkning| <<&nbsp;&nbsp;Förra demoavsnitt]]}}
 
{{Selected tab|[[1.7 Potenser|Genomgång]]}}
 
{{Selected tab|[[1.7 Potenser|Genomgång]]}}
 
{{Not selected tab|[[1.7.1_Grundpotensform|Grundpotensform]]}}
 
{{Not selected tab|[[1.7.1_Grundpotensform|Grundpotensform]]}}
 
{{Not selected tab|[[1.7 Övningar till Potenser|Övningar]]}}
 
{{Not selected tab|[[1.7 Övningar till Potenser|Övningar]]}}
{{Not selected tab|[[Diagnosprov i Matte 1b kap 1 Aritmetik|Diagnosprov kap 1]]}}
+
{{Not selected tab|[[1.8 Talsystem med olika baser|Nästa demoavsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
Rad 20: Rad 20:
 
</big></div>  <!-- exempel -->
 
</big></div>  <!-- exempel -->
  
 
<big>
 
Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med <b><span style="color:red">upphöjt till</span></b>.
 
 
I själva verket betyder <math> \, 2\,^{\color{Red} 3} \, </math> inte <math> \, 2 \cdot 3 \, </math> utan <math> \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, </math> som sedan förkortas till <math> \, 2\,^{\color{Red} 3} </math>.
 
</big>
 
  
 
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td><div class="border-divblue">
+
   <td>[[Image: Potens Bas Exponent_80.jpg]]</td>
<big>Exempel på potens:
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="border-divblue">
 +
<big>Potens med positiv exponent<span style="color:black">:</span>
  
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} </math>  
+
<math> \quad\;\;\; 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8</math>  
  
 
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
 
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
  
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.  
+
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.
</big></div>
+
</big></div></td>
</td>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Potens Bas Exponent_80.jpg]]</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
Rad 46: Rad 39:
  
 
<big>
 
<big>
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. <math> \, 2\, </math> heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> <b><span style="color:red">exponenten</span></b>.
+
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. Ingredienserna är <math> \, 2\, </math> som heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> som heter <b><span style="color:red">exponenten</span></b>.
  
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att <math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
+
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att<span style="color:black">:</span>
  
Därför det är fel att multiplicera <math> \, 2 \, </math> med <math> \, {\color{Red} 3} \, </math> när man ska beräkna <math> \, 2\,^{\color{Red} 3} </math>.
+
<math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv, en förkortning för upprepad multiplikation (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
 
</big>
 
</big>
  
Rad 65: Rad 58:
  
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 +
 +
För att förstå den snabbare lösningen se [[1.7_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
 
</big>
 
</big>
 
</div>  <!-- exempel1 -->
 
</div>  <!-- exempel1 -->
  
  
<big>
+
<big>Generellt:</big>
För att förstå den snabbare lösningen måste man känna till:
+
</big>
+
  
== <b><span style="color:#931136">Potenslagarna</span></b> ==
+
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
  
<big>
+
<div class="ovnE">
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> \, x \, </math> och <math> \, y \, </math> godtyckliga tal och <math> m,\,n </math> heltal (<math> n\neq 0 </math>):
+
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> med <b><span style="color:red">positiv</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
</big>
+
 
 +
:::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
 +
 
 +
:::::<big><math> \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 +
</div>
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenslagarna</span></b> ==
  
  
Rad 94: Rad 94:
 
----
 
----
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
</div> <!-- border-divblue -->
+
</div>
  
 
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
 
  
 
<big>
 
<big>
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> kan, om exponenten <math> \, {\color{Red} x} \, </math> är ett positivt heltal och basen <big><math> \, a \, </math></big> ett tal <math> \neq 0 </math>, definieras som<span style="color:black">:</span>
+
Dessa lagar gäller för potenser där baserna <math> \, a,\,b \, </math> är tal <math> \, \neq 0 \, </math> och exponenterna <math> \, x,\,y \, </math> är godtyckliga tal.
 +
</big>
  
::::::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
 
 
::::::::<big><math> a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 
</big>
 
  
 
<div class="exempel"> <!-- exempel2 -->
 
<div class="exempel"> <!-- exempel2 -->
Rad 143: Rad 138:
  
 
<big>
 
<big>
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger inte för negativa exponenter.
+
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten <math> \, 0 \, </math>:
  
Antalet multiplikationer av basen med sig själv kan inte vara negativt. Det behövs en ny definition.
+
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller <math> \, 0 \, </math>. Det behövs nya definitioner resp. slutsatser.
 
</big>
 
</big>
  
  
 
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
<div class="border-divblue">
+
<div class="exempel">
<big>Exempel på potens med negativ exponent<span style="color:black">:</span>
+
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 +
</div>
  
::<math> \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>
 
  
<b><span style="color:#931136">Potens med negativ exponent</span></b> = upprepad <b><span style="color:red">division</span></b> av <math> \, 1 \, </math> med <math> \, 2 </math>, <math> \, {\color{Red} 3} \, </math> gånger.
+
<table>
 +
<tr>
 +
  <td><div class="ovnC">
 +
<big>Potens med negativ exponent<span style="color:black">:</span>
  
<b><span style="color:#931136">Negativ exponent</span></b> innebär att <b><span style="color:red">invertera potensen med positiv exponent</span></b>.
+
<math> \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>
 +
 
 +
<b><span style="color:red">Invertera</span></b> potensen med positiv exponent.
 +
 
 +
----
 +
 
 +
Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} \; </math>.
 
</big></div>
 
</big></div>
  
  
<div class="ovnE">
+
</td>
'''Ytterligare exempel:''' <math> \qquad\qquad\qquad </math> Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} </math>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">
 +
<big>Andra exempel<span style="color:black">:</span></big>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
 
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
  
Rad 169: Rad 174:
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 
</div>
 
</div>
 +
</td>
 +
</tr>
 +
</table>
  
 
+
<big>Generellt:</big>
<big>
+
Från exemplet ovan med basen <math> \, 10 \, </math> går vi nu över till den allmänna basen <big><math> \, a \, </math></big>:
+
 
+
 
+
Potensen <big><math> \, a\,^{\color{Red} {-x}} \, </math></big> med <b><span style="color:red">negativ</span></b> exponent kan definieras som<span style="color:black">:</span>
+
 
+
::::<b>Upprepad <span style="color:red">division</span> av <math> \, 1 \, </math> med <big><math> \, a \, </math></big> eller multiplikation med <math> \, \displaystyle \frac{1}{a} \, </math>, <math> \, {\color{Red} x} \, </math> gånger:</b>
+
 
+
:<big><math> \displaystyle a\,^{\color{Red} {-x}} \; = \; 1 \, / \, \underbrace{a \, / \, a \, / \, a \, / \quad \ \cdots \quad / a}_{{\color{Red} x}\;{\rm gånger}} \quad {\color{Red} =} \quad 1 \cdot \underbrace{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \quad \cdot \cdots \quad \cdot \frac{1}{a}}_{{\color{Red} x}\;{\rm gånger}} \; = \; {1 \over a^x}</math></big>
+
 
+
Övergången från division till multiplikation (den <span style="color:red">röda</span> likheten) kan motiveras så här:
+
 
+
Uppfattar man <big><math> \, a \, </math></big> som ett bråk med nämnaren <big><math> \, 1 \, </math></big> dvs <math> \, \displaystyle \frac{a}{1} </math>, kan man ersätta divisionerna med multiplikationer med det inversa <math> \, \displaystyle \frac{1}{a} </math>.
+
 
+
 
+
== <b><span style="color:#931136">Bevis av två potenslagar</span></b> ==
+
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 192: Rad 184:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
<b><span style="color:#931136">Lagen om negativ exponent</span></b> <math> \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \; </math>
+
===== <b><span style="color:#931136">Lagen om negativ exponent</span></b> <math> \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} </math> =====
 
</div> <!-- border-divblue -->
 
</div> <!-- border-divblue -->
  
Rad 207: Rad 199:
  
  
== <b><span style="color:#931136">Potenser med <math> \, 0 \, </math> i exponenten</span></b> ==
+
== <b><span style="color:#931136">Potenser med exponenten <math> \, 0 \, </math></span></b> ==
 +
 
 +
<big>Exempel:</big>
 +
 
 +
<div class="ovnE">
 +
<big><math> \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad </math>
 +
</big></div>
 +
 
 +
 
 +
<big>Generellt:</big>
  
 
<div class="ovnC">
 
<div class="ovnC">
Rad 213: Rad 214:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
<b><span style="color:#931136">Lagen om nollte potens</span></b> <math> \quad a^0 \; = \; 1 \; </math>
+
===== <b><span style="color:#931136">Lagen om nollte potens</span></b> <math> \quad a^0 \; = \; 1 \; </math> =====
 
</div> <!-- border-divblue -->
 
</div> <!-- border-divblue -->
  
Rad 232: Rad 233:
  
  
<big>
+
<big>I båda föregående påståenden ska alltid gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan (Potens <math> \; = \; </math> upprepad multiplikation):
+
 
 +
 
 +
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
 +
 
 +
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
 +
 
 +
<b><span style="color:red">Nollte potensen</span></b> bildar övergången mellan positiva och negativa exponenter, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal:
 
</big>
 
</big>
 +
  
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
Rad 264: Rad 272:
  
 
<big>
 
<big>
Jämför med produkter med negativa faktorer som är en naturlig fortsättning på produkter med positiva faktorer och <b><span style="color:red">nollprodukten</span></b> däremellan (Produkt <math> \; = \; </math> upprepad addition<span style="color:black">:</span> <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} </math>):
+
Jämför exemplet ovan med följande:
 
</big>
 
</big>
 +
  
 
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
Rad 294: Rad 303:
  
  
 +
<big>
 +
Som man ser är även multiplikation med negativa tal en naturlig fortsättning på multiplikation med positiva tal.
 +
 +
Multiplikation med <math> {\color{Red} 0} </math>, kallad <b><span style="color:red">nollprodukten</span></b>, bildar övergången mellan dem, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal.
 +
 +
Att <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} \, </math> beror på att <math> \, 0 \, </math> är additionens enhet, medan multiplikationens enhet är <math> \, 1 \, </math>.
 +
</big>
  
  
Rad 315: Rad 331:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2016 Math Online Sweden AB. All Rights Reserved.
+
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2010-2017 Math Online Sweden AB. All Rights Reserved.

Nuvarande version från 13 februari 2020 kl. 12.17

        <<  Förra demoavsnitt          Genomgång          Grundpotensform          Övningar          Nästa demoavsnitt  >>      


Hur räknar du?

Hur raknar du Potenser 20.jpg OBS!Vanligtfel:23=6

\qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8


Vad är en potens?

Potens Bas Exponent 80.jpg            

Potens med positiv exponent:

\quad\;\;\; 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8

Potens = upprepad multiplikation

av \, 2 \, med sig själv, \, {\color{Red} 3} \, gånger.


\, 2\,^3 \, läses \, {\color{Red} 2} upphöjt till \, {\color{Red} 3} \, och kallas för  potens. Ingredienserna är \, 2\, som heter basen och \, 3 \, som heter exponenten.

Exponenten \, {\color{Red} 3} \, är inget tal som ingår i beräkningen, utan endast en information om att:

\, 2 \, ska multipliceras \, {\color{Red} 3} \, gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4}


Lösning: \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16}

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16}

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \, a\,^{\color{Red} x} \, med positiv exponent ( x \, heltal > 0 \, och \, a \, \neq 0 ) kan definieras som:

Upprepad multiplikation av \, a \, med sig själv, \, {\color{Red} x} \, gånger:
\quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}}


Potenslagarna

Första potenslagen: \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad


Andra potenslagen: \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad


Tredje potenslagen: \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad


Lagen om nollte potens: \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad


Lagen om negativ exponent: \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad


Potens av en produkt: \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad


Potens av en kvot: \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad


Dessa lagar gäller för potenser där baserna \, a,\,b \, är tal \, \neq 0 \, och exponenterna \, x,\,y \, är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \quad\;\; a\,^2 \, \cdot \, a\,^3


Lösning:

a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}

Snabbare:

a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5}


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2

Snabbare:

\displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \, 0 \, :

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \, 0 \, . Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \, 10 \, ger \, \displaystyle {1 \over 10} \; .


      

Andra exempel:

\displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1}
\displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01}
\displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001}

Generellt:

Påstående:

Lagen om negativ exponent \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x}

Bevis:

\displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x}

In den första likheten har vi använt lagen om nollte potens baklänges: \; 1 = a^0 \; .

In den andra likheten har vi använt andra potenslagen: \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; .

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \, 0 \,

Exempel:

\quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad


Generellt:

Påstående:

Lagen om nollte potens \quad a^0 \; = \; 1 \;

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \, 1 :

\displaystyle{a^x \over a^x} \; = \; 1

Av raderna ovan följer påståendet:

a^0 \; = \; 1


I båda föregående påståenden ska alltid gälla: \quad x \, heltal > 0 \, och \, a \, \neq 0 \quad .


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \, 0 \, är övergången mellan positiva och negativa tal:


Varför är \; 5\,^0 \, = \, 1 \; ?

\;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5
\;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5
\;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5
\;\; 5^1 \; = \; {\color{Red} 1} \cdot 5
\; \boxed{{\color{Red} {5^0 \; = \; 1}}}
\;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5}
\;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5}
\;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5}
\;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 }

Att \; {\color{Red} 1} -orna följer med hela tiden beror på att multiplikationens enhet är \, {\color{Red} 1} , dvs \, a \cdot {\color{Red} 1} \, = \, a .

Därför blir endast \, {\color{Red} 1} \, kvar, när vi kommer till \, {\color{Red} {5^0}} \, då alla \, 5-or har försvunnit.


Jämför exemplet ovan med följande:


Varför är \; 5 \cdot 0 \, = \, 0 \; ?

\;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5
\;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5
\;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5
\;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5
\; \boxed{{\color{Red} {5 \cdot 0 \; = \; 0}}}
\;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5
\;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5
\;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5
\;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5

Att \; {\color{Red} 0} -orna följer med hela tiden beror på att additionens enhet är \, {\color{Red} 0} , dvs \, a + {\color{Red} 0} \, = \, a .

Därför blir endast \, {\color{Red} 0} \, kvar, när vi kommer till \, {\color{Red} {5 \cdot 0}} \, då alla \, 5-or har försvunnit.


Som man ser är även multiplikation med negativa tal en naturlig fortsättning på multiplikation med positiva tal.

Multiplikation med {\color{Red} 0} , kallad nollprodukten, bildar övergången mellan dem, precis som \, 0 \, är övergången mellan positiva och negativa tal.

Att \, {\color{Red} 0} \, tar över rollen av \, {\color{Red} 1} \, beror på att \, 0 \, är additionens enhet, medan multiplikationens enhet är \, 1 \, .



Internetlänkar

https://www.youtube.com/watch?v=BMEOkzq3Xo4

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html






Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.