Skillnad mellan versioner av "3.4 Lösning 6a"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
(13 mellanliggande versioner av samma användare visas inte) | |||
Rad 1: | Rad 1: | ||
− | Kalles | + | Kalles teckenstudie i intervallet <math> \, -1 \leq 0 \leq 1 \, </math> kring <math> \, x = 0 \, </math> är alldeles för grov. |
− | + | Graferna i [[3.4_Lösning_6c|<b><span style="color:blue">Lösning 6c</span></b>]] visar vad som händer i intervallet ovan. | |
+ | Ett tätare intervall behövs för att få korrekt resultat, t.ex.<math> \, -0,1 \leq 0 \leq 0,1 \, </math><span style="color:black">:</span> | ||
+ | ::<math> \, f(x) \, = \, x^4\, (1 \, - \, x) \, = \, x^4 \, - \, x^5 </math> | ||
− | ::<math> f' | + | ::<math> \, f\,'\,(x) \, = \, 4\,x^3 \, - \, 5\,x^4 \, </math> |
− | ::<math> f' (0,1) = 3\cdot (0,1)^ | + | ::<math> f' (-0,1) = 4\cdot (-0,1)^3 \, - \, 5\cdot (-0,1)^4 \, = \, -0,0045 \, < 0 </math> |
+ | |||
+ | ::<math> f' (0,1) = 4\cdot 0,1^3 \, - \, 5\cdot 0,1^4 \, = \, 0,0035 \, > 0 </math> | ||
<table RULES="ALL" class="spaced-table" style="margin-left:30px;"> | <table RULES="ALL" class="spaced-table" style="margin-left:30px;"> | ||
Rad 26: | Rad 30: | ||
<td> <strong><big><big>↘</big></big></strong> </td> | <td> <strong><big><big>↘</big></big></strong> </td> | ||
<td> <strong><span style="color:red">Min</span></strong> </td> | <td> <strong><span style="color:red">Min</span></strong> </td> | ||
− | <td> <strong><big><big>&# | + | <td> <strong><big><big>↗</big></big></strong> </td> |
</tr> | </tr> | ||
</table> | </table> | ||
+ | |||
+ | Slutsats<span style="color:black">:</span> <math> \, x \, = \, 0 \, </math> är en minimipunkt. | ||
+ | |||
+ | Jennifer har rätt. |
Nuvarande version från 28 december 2016 kl. 16.12
Kalles teckenstudie i intervallet −1≤0≤1 kring x=0 är alldeles för grov.
Graferna i Lösning 6c visar vad som händer i intervallet ovan.
Ett tätare intervall behövs för att få korrekt resultat, t.ex.−0,1≤0≤0,1:
- f(x)=x4(1−x)=x4−x5
- f′(x)=4x3−5x4
- f′(−0,1)=4⋅(−0,1)3−5⋅(−0,1)4=−0,0045<0
- f′(0,1)=4⋅0,13−5⋅0,14=0,0035>0
x | −0,1 | 0 | 0,1 |
f′(x) | − | 0 | + |
f(x) | ↘ | Min | ↗ |
Slutsats: x=0 är en minimipunkt.
Jennifer har rätt.