Skillnad mellan versioner av "2.4 Lösning 9"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
(En mellanliggande version av samma användare visas inte) | |||
Rad 30: | Rad 30: | ||
:<math>\begin{array}{lrcr} {\rm (I)} & \;\, 25\,a \,+\, 5\,b & = & -6 \\ | :<math>\begin{array}{lrcr} {\rm (I)} & \;\, 25\,a \,+\, 5\,b & = & -6 \\ | ||
5 \cdot {\rm (II)} & \;\, 50\,a \,+\, 5\,b & = & 20 \\ | 5 \cdot {\rm (II)} & \;\, 50\,a \,+\, 5\,b & = & 20 \\ | ||
− | 5 \cdot {\rm (II)} - {\rm (I)} & \;\, 25\,a \,+\, 0 & = & | + | 5 \cdot {\rm (II)} - {\rm (I)} & \;\, 25\,a \,+\, 0 & = & 26 \\ |
− | & \;\, a & = & { | + | & \;\, a & = & {26 \over 25} \\ |
− | & \;\, a & = & | + | & \;\, a & = & 1,04 |
\end{array}</math> | \end{array}</math> | ||
Detta resultat sätts in i ekvation <math> {\rm (II)} </math> för att få <math> b\, </math>: | Detta resultat sätts in i ekvation <math> {\rm (II)} </math> för att få <math> b\, </math>: | ||
− | :<math>\begin{array}{lrcl} {\rm (II)} & \qquad\;\, 10 \cdot | + | :<math>\begin{array}{lrcl} {\rm (II)} & \qquad\;\, 10 \cdot 1,04 \,+\, b & = & 4 \\ |
− | & \qquad\;\, | + | & \qquad\;\, 10,4 \,+\, b & = & 4 \\ |
− | & \qquad\;\, | + | & \qquad\;\, b & = & 4 - 10,4 \\ |
− | & \qquad\;\, | + | & \qquad\;\, b & = & -6,4 |
\end{array}</math> | \end{array}</math> | ||
− | Kurvan <math> y = | + | Kurvan <math> {\color{White} x} y = 1,04\,x^2 - 6,4\,x {\color{White} x} </math> har i punkten <math> (5, -6)\, </math> en tangent med lutningen <math> \,4 </math> . |
Nuvarande version från 1 december 2014 kl. 12.28
Beröringspunkten \( (5, -6)\, \) ligger på kurvan:
\[ y = f(x) = a\,x^2 + b\,x \]
Vi sätter in beröringspunktens koordinater i kurvans ekvation:
\[ -6 = a \cdot 5^2 + b \cdot 5 \]
Vi får följande ekvation med \( a\, \) och \( b\, \) som obekanta:
\[ {\rm (I)} \qquad\qquad 25\,a \,+\, 5\,b \,=\, -6 \]
Å andra sidan har tangenten i beröringspunkten \( (5, -6)\, \) lutningen \( 4\, \). Detta innebär att kurvan i denna punkt har derivatan \( 4\, \), dvs \( f\,'(5) = 4 \). Därför bildar vi derivatan och använder denna information. \[\begin{array}{rcl} f\,'(x) & = & 2\,a\,x + b \\ f\,'(5) & = & 2\,a \cdot 5 + b & = & 4 \\ & = & 10\,a + b & = & 4 \\ \end{array}\] Vi får en till ekvation med \( a\, \) och \( b\, \) som obekanta:
\[ {\rm (II)} \qquad\qquad 10\,a \,+\, b \,=\, 4 \]
Ekvationssystemet \( {\rm (I)\,/\,(II)} \) löser vi med Additionsmetoden (Matte 2):
\[\begin{array}{lrcr} {\rm (I)} & \qquad\qquad 25\,a \,+\, 5\,b & = & -6 \\ {\rm (II)} & \qquad\qquad 10\,a \,+\, b & = & 4 \end{array}\]
Vi multiplicerar ekvation \( {\rm (II)} \) med \( 5\, \) och drar den av från ekvation \( {\rm (I)} \):
\[\begin{array}{lrcr} {\rm (I)} & \;\, 25\,a \,+\, 5\,b & = & -6 \\ 5 \cdot {\rm (II)} & \;\, 50\,a \,+\, 5\,b & = & 20 \\ 5 \cdot {\rm (II)} - {\rm (I)} & \;\, 25\,a \,+\, 0 & = & 26 \\ & \;\, a & = & {26 \over 25} \\ & \;\, a & = & 1,04 \end{array}\]
Detta resultat sätts in i ekvation \( {\rm (II)} \) för att få \( b\, \):
\[\begin{array}{lrcl} {\rm (II)} & \qquad\;\, 10 \cdot 1,04 \,+\, b & = & 4 \\ & \qquad\;\, 10,4 \,+\, b & = & 4 \\ & \qquad\;\, b & = & 4 - 10,4 \\ & \qquad\;\, b & = & -6,4 \end{array}\]
Kurvan \( {\color{White} x} y = 1,04\,x^2 - 6,4\,x {\color{White} x} \) har i punkten \( (5, -6)\, \) en tangent med lutningen \( \,4 \) .