Skillnad mellan versioner av "1.1 Fördjupning till Polynom"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
(202 mellanliggande versioner av samma användare visas inte) | |||
Rad 1: | Rad 1: | ||
+ | __NOTOC__ | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
− | {{Not selected tab|[[ | + | {{Not selected tab|[[Repetitioner från Matte 2|Repetitioner]]}} |
− | {{Not selected tab|[[1.1 Polynom| | + | {{Not selected tab|[[1.1 Polynom|Genomgång]]}} |
{{Not selected tab|[[1.1 Övningar till Polynom|Övningar]]}} | {{Not selected tab|[[1.1 Övningar till Polynom|Övningar]]}} | ||
{{Selected tab|[[1.1 Fördjupning till Polynom|Fördjupning]]}} | {{Selected tab|[[1.1 Fördjupning till Polynom|Fördjupning]]}} | ||
− | {{Not selected tab|[[1. | + | {{Not selected tab|[[1.4 Talet e och den naturliga logaritmen|Nästa demoavsnitt >> ]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
+ | <!-- [[Media: Lektion_3_Polynom_Ruta_a.pdf|<strong><span style="color:blue">Lektion 3 Polynom</span></strong>]] | ||
− | [[Media: | + | [[Media: Lektion 4 Polynom Ruta.pdf|<strong><span style="color:blue">Lektion 4 Polynom: Fördjupning</span></strong>]] --> |
− | + | == <b><span style="color:#931136">Polynomfunktioner av högre grad</span></b> == | |
+ | <big> | ||
+ | När ett polynom tilldelas en annan variabel, säg <math> \, y \, </math> bildas en <strong><span style="color:red">polynomfunktion</span></strong>. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ<span style="color:black">:</span> | ||
− | + | :::<math> y = 4\,x + 12 </math> | |
+ | Till höger om likhetstecknet står ett polynom där <math> \, x \, </math> förekommer som 1:a gradspotens dvs med exponenten <math> \, 1 \, </math>. Därför kallas <math> \, 4\,x \, </math> polynomets linjära term. Polynomets konstanta term är <math> \, 12 </math>. Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ<span style="color:black">:</span> | ||
− | = | + | :::<math> y = 3\,x^2 + 5\,x - 16 </math> |
− | + | Här är graden <math> \, 2 </math>. Den kvadratiska termen är <math> \, 3\,x^2 \, </math>, den linjära termen <math> \, 5\,x\, </math> och den konstanta termen <math> \, -16 </math>. Grafen till denna 2:a gradfunktion är en parabel. Dessa funktioner kallas polynomfunktioner därför att uttrycken till höger om likhetstecken är polynom, dvs summor av termer där exponenterna till <math> \, x</math>-potenserna är positiva heltal eller <math> \, 0 </math>. I Matte 3-kursen ska vi nu lära oss att hantera även polynom av högre grad än <math> \, 2 </math>. | |
+ | </big> | ||
− | |||
− | + | <div class="exempel"> | |
+ | <table> | ||
+ | <tr> | ||
+ | <td> | ||
+ | === <b><span style="color:#931136">Exempel på polynomfunktion av högre grad</span></b> === | ||
+ | <big> | ||
+ | Vi tar som exempel följande 4:e gradspolynomfunktion: | ||
− | ::<math> y = | + | :::<math> y = x^4 - 29\;x^2 + 100 </math> |
− | + | vars graf till höger är mer komplicerad än en parabel. | |
− | + | Den har framför allt fler minima, maxima och nollställen. | |
− | : | + | Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen<span style="color:black">:</span> |
− | :[[Image: 4- | + | :::<math> x^4 - 29\;x^2 + 100 = 0 </math> |
+ | </big> | ||
+ | </td> | ||
+ | <td> [[Image: 4-e_gradspolynom_70_70.jpg]]</td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | </div> <!-- exempel --> | ||
− | |||
− | + | == <b><span style="color:#931136">En familj av högre grads polynomfunktioner</span></b> == | |
+ | <big> | ||
+ | Ett polynoms grad är ett mått på dess komplexitet: Ju högre grad, desto oftare svänger kurvorna och desto fler maxima/minima har de. Här ser man sex polynom vars grafer är ritade i samma koordinatsystem: | ||
+ | <table> | ||
+ | <tr> | ||
+ | <td> [[Image: Chebyshev_Polyn_2nd Formler.jpg]]</td> | ||
+ | <td> [[Image: Chebyshev_Polyn_2nd_60a.jpg]]</td> | ||
+ | </tr> | ||
+ | </table></big> | ||
+ | === <b><span style="color:#931136">Polynom av <math> n</math>-te grad har <math> n-1 </math> svängningar (maxima/minima):</span></b> === | ||
+ | <big> | ||
+ | <math> U_5(x) </math> (svart kurva) är av <math> 5</math>:e grad och har <math> 4 </math> svängningar (maxima/minima). | ||
− | + | <math> U_4(x) </math> (gul kurva) är av <math> 4</math>:e grad och har <math> 3 </math> svängningar (maxima/minima). | |
− | + | <math> U_3(x) </math> (grön kurva) är av <math> 3</math>:e grad och har <math> 2 </math> svängningar (maxima/minima). | |
− | : | + | <math> U_2(x) </math> (blå kurva) är av <math> 2</math>:a grad och har <math> 1 </math> svängning (maxima/minima). |
− | + | Dessa polynom kallas för [http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html <b><span style="color:blue">Chebyshevpolynom</span></b>] efter den ryske matematikern [http://en.wikipedia.org/wiki/Pafnuty_Chebyshev <b><span style="color:blue">Chebyshev</span></b>] som definierade dem 1854 med följande s.k. | |
+ | </big> | ||
+ | === <b><span style="color:#931136">Rekursionsformel</span></b> === | ||
− | + | <div class="border-divblue"> | |
+ | <math> U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... </math> | ||
− | + | <math> U_0(x) = 1, \quad U_1(x) = 2\,x </math> | |
+ | </div> | ||
− | |||
− | + | <div class="exempel"> | |
− | + | === <b><span style="color:#931136">Användning av rekursionsformeln</span></b> === | |
− | + | <big> | |
− | + | Ställ upp de Chebyshevpolynomen <math> \, U_2, \, U_3, \, U_4\,</math> med hjälp av de två första <math> \, U_0, \, U_1 </math>. | |
− | + | ||
− | + | ||
− | + | ||
::<math> \displaystyle U_0(x) = \underline{1} </math> | ::<math> \displaystyle U_0(x) = \underline{1} </math> | ||
Rad 67: | Rad 94: | ||
::<math> U_1(x) = \underline{2\,x} </math> | ::<math> U_1(x) = \underline{2\,x} </math> | ||
− | För <math>n = 2\,</math> ger rekursionsformeln: | + | För <math>n = 2\,</math> ger rekursionsformeln<span style="color:black">:</span> |
::<math> U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} </math> | ::<math> U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} </math> | ||
− | Sedan kan vi få fram <math> U_3(x) </math> genom att att sätta in n = 3 i rekursionsformeln: | + | Sedan kan vi få fram <math> U_3(x) </math> genom att att sätta in n = 3 i rekursionsformeln<span style="color:black">:</span> |
::<math> U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} </math> | ::<math> U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} </math> | ||
− | För <math>n = 4\,</math> ger rekursionsformeln <math> U_4(x) </math> osv.: | + | För <math>n = 4\,</math> ger rekursionsformeln <math> U_4(x) </math> osv.<span style="color:black">:</span> |
::<math> U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} </math> | ::<math> U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} </math> | ||
+ | </big></div> | ||
− | |||
+ | <big> | ||
+ | De nedsänkta [[1.1_Polynom#Allm.C3.A4n_definition|<b><span style="color:blue">indexen</span></b>]] <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används både för att relatera indexet till polynomets grad och kunna definiera dem med rekursionsformeln. | ||
− | == | + | <b><span style="color:red">Rekursion</span></b> är ett koncept som används för att få fram resultat genom <b><span style="color:red">successiv upprepning</span></b> av beräkningar. |
− | + | Rekursionsformeln ger oss möjligheten att ställa upp ett Chebyshevpolynom med hjälp av de två föregående. De första två Chebyshevpolynomen <math> \, U_0, \, U_1 \, </math> är explicit angivna i rekursionsformelns andra rad. Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math> \, U_0, \, U_1 \,</math> i rekursionsformelns högerled. Det fjärde Chebyshevpolynomet <math> \, U_3 \, </math> får man genom att sätta in <math> \, U_1, \, U_2 \, </math> i högerledet. <math>U_4\,</math> får man genom att sätta in <math> \, U_2, \, U_3 \,</math> i högerledet osv. | |
+ | </big> | ||
− | |||
+ | == <b><span style="color:#931136">Jämförelse av koefficienter</span></b> == | ||
+ | <div class="tolv"> <!-- tolv4 --> | ||
− | + | Jämförelse av koefficienter är en teknik eller en metod som vi kommer att använda för att lösa högre gradsekvationer genom att faktorisera polynom av högre grad än 2, se [[1.1 Övningar till Polynom#Övning 10|<strong><span style="color:blue">övningarna 10-12</span></strong>]]. Metoden bygger på begreppet likhet mellan polynom. | |
− | + | </div> <!-- tolv4 --> | |
− | <strong><span style="color: | + | |
− | |||
− | + | <div class="border-divblue"> <!-- border-div2 --> | |
+ | <big> | ||
+ | <strong>Definition:</strong> <math> \quad </math> <span style="color:red">Två polynom</span> | ||
− | :::::<math> | + | :::::<math> \; P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 </math> |
− | < | + | :::::<math> \; Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 </math> |
− | : | + | <span style="color:red">är lika med varandra</span> om de har samma grad och om alla deras motsvarande koefficienter, dvs om<span style="color:black">:</span> |
− | + | ||
+ | :::::<math> \; a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 </math> | ||
+ | </big> | ||
+ | </div> <!-- border-divblue --> | ||
− | |||
− | + | <div class="exempel12"> <!-- exempel3 --> | |
+ | === <span style="color:#931136">Exempel 1</span> === | ||
+ | |||
+ | Följande två polynom är givna där <math> a\, </math> och <math> b\, </math> är konstanter medan <math> x\, </math> är polynomens oberoende variabel<span style="color:black">:</span> | ||
::<math> P(x) = a \cdot x + 2\,a + b </math> | ::<math> P(x) = a \cdot x + 2\,a + b </math> | ||
Rad 113: | Rad 148: | ||
::<math> Q(x) = 2\,x + 1\!\, </math> | ::<math> Q(x) = 2\,x + 1\!\, </math> | ||
− | + | För vilka värden på <math> a\, </math> och <math> b\, </math> är de två polynomen lika med varandra? | |
− | + | ||
− | För vilka värden på <math> a\, </math> och <math> b\, </math> är de två | + | |
'''Lösning:''' | '''Lösning:''' | ||
− | Vi skriver <math> P(x),\, </math> och <math> Q(x)\, </math> så att vi lättare kan se motsvarande koefficienter: | + | Vi skriver <math> P(x),\, </math> och <math> Q(x)\, </math> så att vi lättare kan se motsvarande koefficienter<span style="color:black">:</span> |
::<math> P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 </math> | ::<math> P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 </math> | ||
Rad 125: | Rad 158: | ||
::<math> Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 </math> | ::<math> Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 </math> | ||
− | Jämförelse av koefficienterna till <math> x^1\, </math> leder till: | + | Jämförelse av koefficienterna till <math> x^1\, </math> leder till<span style="color:black">:</span> |
::<math> a = 2\,</math> | ::<math> a = 2\,</math> | ||
− | Jämförelse av koefficienterna till <math> x^0 \,</math> leder till: | + | Jämförelse av koefficienterna till <math> x^0 \,</math> leder till<span style="color:black">:</span> |
::<math> 2\,a + b = 1\!\,</math> | ::<math> 2\,a + b = 1\!\,</math> | ||
Rad 135: | Rad 168: | ||
Sätter man in <math> a = 2\, </math> i denna relation får man <math> b = -3\, </math>. | Sätter man in <math> a = 2\, </math> i denna relation får man <math> b = -3\, </math>. | ||
− | Polynomen <math> P(x)\, </math> och <math> Q(x)\, </math> är lika med varandra för: | + | Polynomen <math> P(x)\, </math> och <math> Q(x)\, </math> är lika med varandra för<span style="color:black">:</span> |
::<math> a = 2\, </math> | ::<math> a = 2\, </math> | ||
::<math> b = -3\, </math> | ::<math> b = -3\, </math> | ||
+ | </div> <!-- exempel3 --> | ||
− | ==== Exempel 2 | + | <div class="exempel12"> <!-- exempel4 --> |
+ | === <span style="color:#931136">Exempel 2 Polynomdivision</span> === | ||
− | + | Utför polynomdivisionen<span style="color:black">:</span> <math> \qquad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) </math> | |
− | : | + | En annan formulering av uppgiften är: |
− | Hitta ett 2:a gradspolynom <math> Q(x)\, </math> så att | + | Hitta ett 2:a gradspolynom <math> \, Q(x)\, </math> så att <math> \, Q(x)\cdot (x-2) = P(x) </math>, |
− | + | där <math> \, P(x) = x^3 + 4\,x^2 + x - 26 </math>. | |
'''Lösning:''' | '''Lösning:''' | ||
− | Det 2:a gradspolynomet <math> Q(x)\, </math> kan skrivas så här: | + | Det 2:a gradspolynomet <math> Q(x)\, </math> kan skrivas så här<span style="color:black">:</span> |
::<math> Q(x) = a\,x^2 + b\,x + c </math> | ::<math> Q(x) = a\,x^2 + b\,x + c </math> | ||
− | Vi bestämmer koefficienterna <math> a\, , \, b\, </math> och <math> c\, </math> så att <math> {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) </math> | + | Vi bestämmer koefficienterna <math> a\, , \, b\, </math> och <math> c\, </math> så att <math> {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) </math><span style="color:black">:</span> |
::<math>\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\ | ::<math>\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\ | ||
Rad 167: | Rad 202: | ||
\end{array} </math> | \end{array} </math> | ||
− | Jämförelse av koefficienterna till <math> x^3 </math>-termen ger: | + | Jämförelse av koefficienterna till <math> x^3 </math>-termen ger<span style="color:black">:</span> |
::::<math> a = 1 </math> | ::::<math> a = 1 </math> | ||
− | Jämförelse av koefficienterna till <math> x^2 </math>-termen ger: | + | Jämförelse av koefficienterna till <math> x^2 </math>-termen ger<span style="color:black">:</span> |
::<math>\begin{align} -2\,a + b & = 4 \\ | ::<math>\begin{align} -2\,a + b & = 4 \\ | ||
Rad 179: | Rad 214: | ||
\end{align} </math> | \end{align} </math> | ||
− | Jämförelse av koefficienterna till <math> x^1 </math>-termen ger: | + | Jämförelse av koefficienterna till <math> x^1 </math>-termen ger<span style="color:black">:</span> |
::<math>\begin{align} -2\,b + c & = 1 \\ | ::<math>\begin{align} -2\,b + c & = 1 \\ | ||
Rad 187: | Rad 222: | ||
\end{align} </math> | \end{align} </math> | ||
− | Jämförelse av koefficienterna till <math> x^0 \, </math>-termen bekräftar värdet på <math> c \, </math>: | + | Jämförelse av koefficienterna till <math> x^0 \, </math>-termen bekräftar värdet på <math> c \, </math><span style="color:black">:</span> |
::<math>\begin{align} - 2\,c & = - 26 \\ | ::<math>\begin{align} - 2\,c & = - 26 \\ | ||
Rad 193: | Rad 228: | ||
\end{align} </math> | \end{align} </math> | ||
− | Vi får <math> a = 1\, , \, b = 6\, </math> och <math> c = 13\, </math> och därmed: | + | Vi får <math> a = 1\, , \, b = 6\, </math> och <math> c = 13\, </math> och därmed<span style="color:black">:</span> <math> \quad Q(x) = x^2 + 6 \, x + 13 </math> |
+ | |||
+ | |||
+ | Alltså är<span style="color:black">:</span> <math> \qquad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) \; = \; x^2 + 6 \, x + 13</math> | ||
+ | </div> <!-- exempel4 --> | ||
+ | |||
+ | |||
+ | === <b><span style="color:#931136">Anmärkningar</span></b> === | ||
+ | <div class="tolv"> <!-- tolv5 --> | ||
+ | |||
+ | * De flesta läroböcker behandlar <b><span style="color:red">polynomdivision</span></b> genom att direkt dividera polynomen med varandra och därvid använda olika, speciella uppställningstekniker som alla är lite besvärliga. Jämförelse av koefficienter är en generell metod, inte bara för polynomdivision utan även för faktorisering av polynom samt för andra problem, där ett polynom är efterfrågad, t.ex. när ett polynom är lösningen till en algebraisk eller en differentialekvation. Man får mer insikt i polynomens struktur. | ||
+ | |||
+ | * I litteraturen förekommer även ett annat namn för den metod som beskrevs ovan. Istället för [[1.1_Fördjupning_till_Polynom#J.C3.A4mf.C3.B6relse_av_koefficienter|<b><span style="color:blue">jämförelse av koefficienter</span></b>]] som vi använder pratar man om <b><span style="color:red">metoden med obestämda koefficienter</span></b> (eng.: the method of undetermined coefficients). Med obestämda koefficienter menar man den ansats som man i början gör med obestämda koefficienter som man sedan bestämmer under metodens gång. | ||
+ | |||
+ | </div> <!-- tolv5 --> | ||
+ | |||
+ | |||
+ | |||
+ | |||
− | |||
− | [[Matte:Copyrights|Copyright]] © | + | [[Matte:Copyrights|Copyright]] © 2021 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved. |
Nuvarande version från 5 november 2021 kl. 09.31
Repetitioner | Genomgång | Övningar | Fördjupning | Nästa demoavsnitt >> |
Polynomfunktioner av högre grad
När ett polynom tilldelas en annan variabel, säg \( \, y \, \) bildas en polynomfunktion. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ:
- \[ y = 4\,x + 12 \]
Till höger om likhetstecknet står ett polynom där \( \, x \, \) förekommer som 1:a gradspotens dvs med exponenten \( \, 1 \, \). Därför kallas \( \, 4\,x \, \) polynomets linjära term. Polynomets konstanta term är \( \, 12 \). Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ:
- \[ y = 3\,x^2 + 5\,x - 16 \]
Här är graden \( \, 2 \). Den kvadratiska termen är \( \, 3\,x^2 \, \), den linjära termen \( \, 5\,x\, \) och den konstanta termen \( \, -16 \). Grafen till denna 2:a gradfunktion är en parabel. Dessa funktioner kallas polynomfunktioner därför att uttrycken till höger om likhetstecken är polynom, dvs summor av termer där exponenterna till \( \, x\)-potenserna är positiva heltal eller \( \, 0 \). I Matte 3-kursen ska vi nu lära oss att hantera även polynom av högre grad än \( \, 2 \).
En familj av högre grads polynomfunktioner
Ett polynoms grad är ett mått på dess komplexitet: Ju högre grad, desto oftare svänger kurvorna och desto fler maxima/minima har de. Här ser man sex polynom vars grafer är ritade i samma koordinatsystem:
Polynom av \( n\)-te grad har \( n-1 \) svängningar (maxima/minima):
\( U_5(x) \) (svart kurva) är av \( 5\):e grad och har \( 4 \) svängningar (maxima/minima).
\( U_4(x) \) (gul kurva) är av \( 4\):e grad och har \( 3 \) svängningar (maxima/minima).
\( U_3(x) \) (grön kurva) är av \( 3\):e grad och har \( 2 \) svängningar (maxima/minima).
\( U_2(x) \) (blå kurva) är av \( 2\):a grad och har \( 1 \) svängning (maxima/minima).
Dessa polynom kallas för Chebyshevpolynom efter den ryske matematikern Chebyshev som definierade dem 1854 med följande s.k.
Rekursionsformel
\( U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... \)
\( U_0(x) = 1, \quad U_1(x) = 2\,x \)
Användning av rekursionsformeln
Ställ upp de Chebyshevpolynomen \( \, U_2, \, U_3, \, U_4\,\) med hjälp av de två första \( \, U_0, \, U_1 \).
- \[ \displaystyle U_0(x) = \underline{1} \]
- \[ U_1(x) = \underline{2\,x} \]
För \(n = 2\,\) ger rekursionsformeln:
- \[ U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} \]
Sedan kan vi få fram \( U_3(x) \) genom att att sätta in n = 3 i rekursionsformeln:
- \[ U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} \]
För \(n = 4\,\) ger rekursionsformeln \( U_4(x) \) osv.:
- \[ U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} \]
De nedsänkta indexen \(_0,\,_1,\,_2,\,_3,\,_4,\,_5\) i beteckningarna \(U_0, U_1, U_2, U_3, U_4, U_5\,\) används både för att relatera indexet till polynomets grad och kunna definiera dem med rekursionsformeln.
Rekursion är ett koncept som används för att få fram resultat genom successiv upprepning av beräkningar.
Rekursionsformeln ger oss möjligheten att ställa upp ett Chebyshevpolynom med hjälp av de två föregående. De första två Chebyshevpolynomen \( \, U_0, \, U_1 \, \) är explicit angivna i rekursionsformelns andra rad. Det tredje Chebyshevpolynomet \(U_2\,\) får man genom att sätta in \( \, U_0, \, U_1 \,\) i rekursionsformelns högerled. Det fjärde Chebyshevpolynomet \( \, U_3 \, \) får man genom att sätta in \( \, U_1, \, U_2 \, \) i högerledet. \(U_4\,\) får man genom att sätta in \( \, U_2, \, U_3 \,\) i högerledet osv.
Jämförelse av koefficienter
Jämförelse av koefficienter är en teknik eller en metod som vi kommer att använda för att lösa högre gradsekvationer genom att faktorisera polynom av högre grad än 2, se övningarna 10-12. Metoden bygger på begreppet likhet mellan polynom.
Definition: \( \quad \) Två polynom
- \[ \; P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 \]
- \[ \; Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 \]
är lika med varandra om de har samma grad och om alla deras motsvarande koefficienter, dvs om:
- \[ \; a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 \]
Exempel 1
Följande två polynom är givna där \( a\, \) och \( b\, \) är konstanter medan \( x\, \) är polynomens oberoende variabel:
- \[ P(x) = a \cdot x + 2\,a + b \]
- \[ Q(x) = 2\,x + 1\!\, \]
För vilka värden på \( a\, \) och \( b\, \) är de två polynomen lika med varandra?
Lösning:
Vi skriver \( P(x),\, \) och \( Q(x)\, \) så att vi lättare kan se motsvarande koefficienter:
- \[ P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 \]
- \[ Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 \]
Jämförelse av koefficienterna till \( x^1\, \) leder till:
- \[ a = 2\,\]
Jämförelse av koefficienterna till \( x^0 \,\) leder till:
- \[ 2\,a + b = 1\!\,\]
Sätter man in \( a = 2\, \) i denna relation får man \( b = -3\, \).
Polynomen \( P(x)\, \) och \( Q(x)\, \) är lika med varandra för:
- \[ a = 2\, \]
- \[ b = -3\, \]
Exempel 2 Polynomdivision
Utför polynomdivisionen: \( \qquad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) \)
En annan formulering av uppgiften är:
Hitta ett 2:a gradspolynom \( \, Q(x)\, \) så att \( \, Q(x)\cdot (x-2) = P(x) \),
där \( \, P(x) = x^3 + 4\,x^2 + x - 26 \).
Lösning:
Det 2:a gradspolynomet \( Q(x)\, \) kan skrivas så här:
- \[ Q(x) = a\,x^2 + b\,x + c \]
Vi bestämmer koefficienterna \( a\, , \, b\, \) och \( c\, \) så att \( {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) \):
- \[\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\ & = & a\,x^3 - 2\,a\,x^2 + b\,x^2 - 2\,b\,x + c\,x - 2\,c & = \\ & = & a\,x^3 + (-2\,a + b)\,x^2 + (-2\,b + c)\,x - 2\,c & = \\ & = & a \cdot x^3 + (-2\,a + b) \cdot x^2 + (-2\,b + c) \cdot x - 2\,c \cdot x^0 & \\ P(x) & = & 1 \cdot x^3 + \quad\;\;\;\;4 \quad\;\; \cdot x^2 + \quad\;\;\;\,1 \quad\;\; \cdot x - 26 \cdot x^0 \end{array} \]
Jämförelse av koefficienterna till \( x^3 \)-termen ger:
- \[ a = 1 \]
Jämförelse av koefficienterna till \( x^2 \)-termen ger:
- \[\begin{align} -2\,a + b & = 4 \\ -2\cdot 1 + b & = 4 \\ - 2 + b & = 4 \\ b & = 6 \\ \end{align} \]
Jämförelse av koefficienterna till \( x^1 \)-termen ger:
- \[\begin{align} -2\,b + c & = 1 \\ -2\cdot 6 + c & = 1 \\ -12 + c & = 1 \\ c & = 13 \\ \end{align} \]
Jämförelse av koefficienterna till \( x^0 \, \)-termen bekräftar värdet på \( c \, \):
- \[\begin{align} - 2\,c & = - 26 \\ c & = 13 \\ \end{align} \]
Vi får \( a = 1\, , \, b = 6\, \) och \( c = 13\, \) och därmed: \( \quad Q(x) = x^2 + 6 \, x + 13 \)
Alltså är: \( \qquad (x^3 + 4\,x^2 + x - 26) \; / \; (x-2) \; = \; x^2 + 6 \, x + 13\)
Anmärkningar
- De flesta läroböcker behandlar polynomdivision genom att direkt dividera polynomen med varandra och därvid använda olika, speciella uppställningstekniker som alla är lite besvärliga. Jämförelse av koefficienter är en generell metod, inte bara för polynomdivision utan även för faktorisering av polynom samt för andra problem, där ett polynom är efterfrågad, t.ex. när ett polynom är lösningen till en algebraisk eller en differentialekvation. Man får mer insikt i polynomens struktur.
- I litteraturen förekommer även ett annat namn för den metod som beskrevs ovan. Istället för jämförelse av koefficienter som vi använder pratar man om metoden med obestämda koefficienter (eng.: the method of undetermined coefficients). Med obestämda koefficienter menar man den ansats som man i början gör med obestämda koefficienter som man sedan bestämmer under metodens gång.
Copyright © 2021 TechPages AB. All Rights Reserved.