Skillnad mellan versioner av "1.5 Fördjupning till Kontinuerliga och diskreta funktioner"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(26 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Polynom| <<&nbsp;&nbsp;Förra demoavsnitt]]}}
+
{{Not selected tab|[[1.4 Talet e och den naturliga logaritmen| <<&nbsp;&nbsp;Förra demoavsnitt]]}}
 
{{Not selected tab|[[1.5 Kontinuerliga och diskreta funktioner|Genomgång]]}}
 
{{Not selected tab|[[1.5 Kontinuerliga och diskreta funktioner|Genomgång]]}}
 
{{Not selected tab|[[1.5 Övningar till Kontinuerliga och diskreta funktioner|Övningar]]}}
 
{{Not selected tab|[[1.5 Övningar till Kontinuerliga och diskreta funktioner|Övningar]]}}
 
{{Selected tab|[[1.5 Fördjupning till Kontinuerliga och diskreta funktioner|Fördjupning]]}}
 
{{Selected tab|[[1.5 Fördjupning till Kontinuerliga och diskreta funktioner|Fördjupning]]}}
{{Not selected tab|[[2.1 Introduktion till derivata|Nästa demoavsnitt&nbsp;&nbsp;>> ]]}}
+
{{Not selected tab|[[1.6 Absolutbelopp|Nästa demoavsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
<!-- [[Media: Lektion 9 Kontin. & diskreta funktioner Ruta.pdf|<strong><span style="color:blue">Lektion 9 Kontinuerliga & diskreta funktioner</span></strong>]] -->
+
<!-- [[Media: Lektion 9 Kontin. & diskreta funktioner Ruta.pdf|<b><span style="color:blue">Lektion 9 Kontinuerliga & diskreta funktioner</span></b>]] -->
 
<div class="tolv"> <!-- tolv1 -->
 
<div class="tolv"> <!-- tolv1 -->
I genomgången sades att kontinuerlig (motsatsen till diskret) betydde sammanhängande.  
+
I genomgången sades att kontinuerlig betydde sammanhängande.  
  
Definitionsmängder till kontinuerliga funktioner är kontinuerliga mängder som t.ex. de rationella eller de reella talen. Som [[1.5_Kontinuerliga_och_diskreta_funktioner#Exempel_2_Kontinuerlig_funktion|<b><span style="color:blue">exempel</span></b>]] på en kontinuerlig funktion ritades grafen till en linjär funktion med en genomdragen rät linje. Kontinuerliga funktioners grafer kan man rita utan att lyfta pennan. Allt detta är fortfarande sant, men alla dessa resonemang är intuitiva.
+
Som [[1.5_Kontinuerliga_och_diskreta_funktioner#Exempel_2_Kontinuerlig_funktion|<b><span style="color:blue">exempel</span></b>]] på en kontinuerlig funktion ritades grafen till en linjär funktion med en sammanhängande rät linje. Kontinuerliga funktioners grafer kan man rita utan att lyfta pennan. Allt detta är fortfarande sant, men sådana resonemang är intuitiva.
  
Här följer en mer exakt matematisk definition:
+
Här följer en mer exakt matematisk definition för när en funktion är kontinuerlig och när den är diskontinuerlig:
 
</div> <!-- tolv1 -->
 
</div> <!-- tolv1 -->
  
Rad 25: Rad 25:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
En funktion <math> \, y = f(x) \, </math> är &nbsp; <b><span style="color:red">kontinuerlig för</span></b> <math> {\color{Red} {x = a}} </math>
+
En funktion <math> \, y = f(x) \, </math> är &nbsp; <b><span style="color:red">kontinuerlig för</span></b> <math> {\color{Red} {x = a}} </math> &nbsp; om den är definierad för <math> \, x = a \, </math> och om<span style="color:black">:</span>
 
+
om den är definierad för <math> \, x = a \, </math> och om<span style="color:black">:</span>
+
  
 
::::<math> f(x) \to f(a) \quad {\rm när} \quad x \to a </math>
 
::::<math> f(x) \to f(a) \quad {\rm när} \quad x \to a </math>
  
Om <math> \, f(x) \, </math> är definierad för <math> \, x = a \, </math> men <math> f(x) </math> <b><span style="color:red">inte</span></b> <math> \to f(a) \; {\rm när} \; x \to a </math>
+
Om däremot <math> \, f(x) \, </math> är definierad för <math> \, x = a \, </math>, men <math> f(x) </math> <b><span style="color:red">inte</span></b> <math> \to f(a) \; {\rm när} \; x \to a </math>
  
 
är funktionen <b><span style="color:red">diskontinuerlig i <math> \, x = a </math></span></b>.
 
är funktionen <b><span style="color:red">diskontinuerlig i <math> \, x = a </math></span></b>.
Rad 37: Rad 35:
  
  
Läs den tredje raden i definitionen så här<span style="color:black">:</span> <math> \; {\rm " }f(x) \, </math> går mot <math> f(a)\, </math> när <math> x\, </math> går mot <math> a \, {\rm "} </math>.
+
Läs den andra raden i definitionen så här<span style="color:black">:</span> <math> \; {\rm " }f(x) \, </math> går mot <math> f(a)\, </math> när <math> x\, </math> går mot <math> a \, {\rm "} </math>.
  
 
Observera att definitionen är punktvis, dvs den talar om när en funktion är kontinuerlig <b><span style="color:red">för ett visst</span></b> <math> {\color{Red} x}\, </math><b><span style="color:red">-värde</span></b> nämligen för <math> {\color{Red} {x = a}}\, </math>.
 
Observera att definitionen är punktvis, dvs den talar om när en funktion är kontinuerlig <b><span style="color:red">för ett visst</span></b> <math> {\color{Red} x}\, </math><b><span style="color:red">-värde</span></b> nämligen för <math> {\color{Red} {x = a}}\, </math>.
Rad 56: Rad 54:
 
<b><span style="color:#931136">a)</span></b> &nbsp; Är denna funktion kontinuerlig för <math> {\color{Red} {x = 1}} \, </math> enligt definitionen ovan?
 
<b><span style="color:#931136">a)</span></b> &nbsp; Är denna funktion kontinuerlig för <math> {\color{Red} {x = 1}} \, </math> enligt definitionen ovan?
  
I definitionen ersätter vi <big><math> \, {\color{Red} a} \, </math></big> med <math> \, {\color{Red} 1} </math> och <math> \, f(x) \, </math> med <math> \displaystyle{5 \over x \, - \, 1}</math>.
+
Vi ersätter <big><math> \, {\color{Red} a} \, </math></big> med <math> \, {\color{Red} 1} </math> i definitionen. Där stär: "... om den (funktionen) är definierad för <math> \, x = a \, </math> OCH ... ."
  
 +
Men <math> f(x) \, = \, \displaystyle{5 \over x \, - \, 1}</math> är inte definierad för <math> {\color{Red} {x = 1}} \, </math>. Därför kan den inte heller vara kontinuerlig för <math> {\color{Red} {x = 1}} \, </math>.
 +
<!--
 
Definitionen säger<span style="color:black">:</span> <math> \, f(x) = \displaystyle{5 \over x \, - \, 1} \, </math> är kontinuerlig för <math> \, {\color{Red} {x = 1}}\, </math> om <math> \, \displaystyle{5 \over x \, - \, 1} \to f(1) \quad {\rm när} \quad x \to 1 </math>.
 
Definitionen säger<span style="color:black">:</span> <math> \, f(x) = \displaystyle{5 \over x \, - \, 1} \, </math> är kontinuerlig för <math> \, {\color{Red} {x = 1}}\, </math> om <math> \, \displaystyle{5 \over x \, - \, 1} \to f(1) \quad {\rm när} \quad x \to 1 </math>.
  
Rad 65: Rad 65:
  
 
<b><span style="color:#931136">Slutsats:</span></b> &nbsp; Funktionen <math> \, y = \displaystyle{5 \over x \, - \, 1} \, </math> är inte kontinuerlig för <math> \, x = 1 </math>.
 
<b><span style="color:#931136">Slutsats:</span></b> &nbsp; Funktionen <math> \, y = \displaystyle{5 \over x \, - \, 1} \, </math> är inte kontinuerlig för <math> \, x = 1 </math>.
 +
-->
 
</div>
 
</div>
  
Rad 92: Rad 93:
 
-webkit-border-radius: 5px;
 
-webkit-border-radius: 5px;
 
-moz-border-radius: 5px;
 
-moz-border-radius: 5px;
border-radius: 5px;"> Funktionen <math> \; y = \displaystyle{5 \over x \, - \, 1} \; </math> är kontinuerlig för alla <math> \, x \, </math> där den är definierad.  
+
border-radius: 5px;"> Funktionen <math> \; y = \displaystyle{5 \over x \, - \, 1} \; </math> är kontinuerlig för alla <math> \, x \, </math> där den är definierad, dvs för alla <math> \, x \, \neq \, 1 \, </math>.  
 
</div>
 
</div>
  
  
Resultatet kan också ses i grafen: Endast i <math> \, x \, = \, 1 \, </math> där funktionen inte är deifinierad, skenar kurvorna iväg mot oändligheten, den ena mot <math> \, + \infty\, </math>, den andra mot <math> \, - \infty\, </math>. I funktionens definitionsområde är kurvan sammanhängande.
+
Grafen visar samma resultat: Endast i <math> \, x \, = \, 1 \, </math> där funktionen inte är deifinierad, skenar kurvorna iväg mot oändligheten, den ena mot <math> \, + \infty\, </math>, den andra mot <math> \, - \infty\, </math>. I funktionens definitionsområde (alla <math> \, x \, \neq \, 1 \, </math>) är kurvan sammanhängande.
 
</div> <!-- ovnE Exempel 1 -->
 
</div> <!-- ovnE Exempel 1 -->
  
Rad 102: Rad 103:
  
 
<div class="ovnC">  
 
<div class="ovnC">  
==== <b><span style="color:#931136">Exempel 2</span></b> ====
+
==== <b><span style="color:#931136">Exempel 2 Teckenfunktionen</span></b> ====
  
Inom datateknik används en funktion som heter [http://sv.wikipedia.org/wiki/Heavisides_stegfunktion <b><span style="color:blue">Heavisidefunktionen</span></b>], även kallad Signumfunktionen. Funktionens skapare [http://sv.wikipedia.org/wiki/Oliver_Heaviside <b><span style="color:blue">Oliver Heaviside</span></b>] använde den för att modellera strömmen genom elektriska kretsar. Så här definieras funktionen:
+
Även kallad [https://sv.wikipedia.org/wiki/Signumfunktionen <b><span style="color:blue">Signumfunktionen</span></b>] som är definierad för <b>alla</b> reela tal <math> \, x \, </math>:
 
+
<div class="border-div"><math>  y \, = \, sgn(x) \, = \, \begin{cases} -1                & \mbox{om } x < 0    \\
<div class="border-div"><math>  y \, = \, H(x) \, = \, \begin{cases} -1                & \mbox{om } x < 0    \\
+
                                                                      0                & \mbox{om } x = 0 \qquad x \;\mbox{reellt tal}  \\
                                                                          0                & \mbox{om } x = 0 \qquad x \;\mbox{reellt tal}  \\
+
                                                                      1                & \mbox{om } x > 0
                                                                          1                & \mbox{om } x > 0
+
 
                                                       \end{cases}
 
                                                       \end{cases}
 
                         </math> </div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; med grafen:  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image: Heaviside 80.jpg]]
 
                         </math> </div> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; med grafen:  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image: Heaviside 80.jpg]]
  
  
De ihåliga ringarna i grafen vid <math> \, y = 1 \, </math> och <math> \, y = -1 \, </math> betyder att dessa värden <b>inte</b> tillhör funktionens värdemängd, dvs <math> \, H(0) \, \neq \, 1 \, </math> och <math> \, H(0) \, \neq \, -1 </math>.
+
De ihåliga ringarna i grafen vid <math> \, y = 1 \, </math> och <math> \, y = -1 \, </math> betyder att dessa värden <b>inte</b> tillhör funktionens värdemängd, dvs <math> \, sgn(0) \, \neq \, 1 \, </math> och <math> \, sgn(0) \, \neq \, -1 </math>.
 
+
Den ifyllda ringen vid origo innebär att detta värde tillhör värdemängden, dvs <math> \, H(0) \, = \, 0 </math>.
+
  
Grafen visar en signal vars amplitud skiftar från 0 till 1 <math>-</math> en egenskap som liknar impulserna inom datornätverk med ettor och nollor.  
+
Den ifyllda ringen vid origo innebär att detta värde tillhör värdemängden, dvs <math> \, sgn(0) \, = \, 0 </math>.
  
Precis som hos Fibonaccis funktion har man definierat en och samma funktion med olika funktionsuttryck i olika delar av dess definitionsmängd.  
+
Precis som hos Fibonaccis funktion är en och samma funktion definierad med olika funktionsuttryck i olika delar av dess definitionsmängd.  
  
 
Kanske kan formeln ovan samt grafen, inkl. de ihåliga och ifyllda ringarna, förstås bättre med följande förenkling (OBS! Matematiskt inte korrekt):   
 
Kanske kan formeln ovan samt grafen, inkl. de ihåliga och ifyllda ringarna, förstås bättre med följande förenkling (OBS! Matematiskt inte korrekt):   
  
::::<math>\begin{array}{rcl}  H(\mbox{negativa}\; x) & = & -1  \\
+
::::<math>\begin{array}{rcl}  sgn(\mbox{negativa}\; x) & = & -1  \\
                               H(0)                  & = & 0  \\
+
                               sgn(0)                  & = & 0  \\
                               H(\mbox{positiva}\; x) & = & 1  
+
                               sgn(\mbox{positiva}\; x) & = & 1  
 
           \end{array}</math>
 
           \end{array}</math>
  
Dvs <math> \, H(x) \, </math> har för negativa <math> \, x \, </math> värdet <math> \, -1 \, </math>, för <math> \, x = 0 \, </math> värdet <math> \, 0 \, </math> och för positiva <math> \, x \, </math> värdet <math> \, 1 \, </math>.
+
Dvs <math> \, sgn(x) \, </math> har för negativa <math> \, x \, </math> värdet <math> \, -1 \, </math>, för <math> \, x = 0 \, </math> värdet <math> \, 0 \, </math> och för positiva <math> \, x \, </math> värdet <math> \, 1 \, </math>.
  
  
 
<div class="exempel">
 
<div class="exempel">
Låt oss nu med hjälp av den [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Allm.C3.A4n_definition_f.C3.B6r_kontinuerliga_funktioner|<b><span style="color:blue">allmänna definitionen</span></b>]] för kontinuerliga funktioner undersöka om Heavisidefunktionen är kontinuerlig för <math> \, {\color{Red} {x = 0}} </math>.
+
Låt oss nu med hjälp av den [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Allm.C3.A4n_definition_f.C3.B6r_kontinuerliga_funktioner|<b><span style="color:blue">allmänna definitionen</span></b>]] för kontinuerliga funktioner undersöka om Signumfunktionen är kontinuerlig för <math> \, {\color{Red} {x = 0}} </math>.
  
Enligt definitionen borde då <math> \; H(x) \to H(0) \quad {\rm när} \quad x \to 0 </math>.
+
Enligt definitionen borde då <math> \; sgn(x) \to sgn(0) \quad {\rm när} \quad x \to 0 </math>.
  
Närmar man sig <math> \, 0 \, </math> på <math> \, x</math>-axeln från höger närmar sig <math> \, H(x) \, </math> värdet <math> \, 1 </math>.  
+
Närmar man sig <math> \, 0 \, </math> på <math> \, x</math>-axeln från höger närmar sig <math> \, sgn(x) \, </math> värdet <math> \, 1 </math>.  
  
Närmar man sig <math> \, 0 \, </math> från vänster närmar sig <math> \, H(x) \, </math> värdet <math> \, -1 </math>.
+
Närmar man sig <math> \, 0 \, </math> från vänster närmar sig <math> \, sgn(x) \, </math> värdet <math> \, -1 </math>.
  
Dvs <math> \, H(x) \to 1 \, </math> och <math> \to -1\, </math> när <math> \, x \to 0 </math>.  
+
Dvs <math> \, sgn(x) \to 1 \, </math> och <math> \to -1\, </math> när <math> \, x \to 0 </math>.  
  
Men <math> \, H(0) = 0 \, </math>. <math> \, H(x) \, </math> går dock inte mot <math> \, H(0) = 0 \, </math> när <math> \, x \to 0 </math>, vilket den borde göra om den hade varit kontinuerlig för <math> \, x = 0 </math>.
+
Men <math> \, sgn(0) = 0 \, </math>. <math> \, sgn(x) \, </math> går dock inte mot <math> \, sgn(0) = 0 \, </math> när <math> \, x \to 0 </math>, vilket den borde göra om den hade varit kontinuerlig för <math> \, x = 0 </math>.
  
Därmed är definitionens krav inte uppfyllt. Funktionen <math> \, H(x) \, </math> är inte kontinuerlig för <math> \, x = 0 </math>.
+
Därmed är kontinuitetens krav inte uppfyllt. Funktionen <math> \, sgn(x) \, </math> är inte kontinuerlig för <math> \, x = 0 </math>.
 
</div>
 
</div>
  
  
Undersökar man vidare kontinuiteten för andra <math> x\, </math> kommer det att visa sig att <math> H(x)\, </math> är kontinuerlig för alla andra <math> x\, </math>:
+
Undersökar man vidare kontinuiteten för andra <math> x\, </math> kommer det att visa sig att <math> sgn(x)\, </math> är kontinuerlig för alla andra <math> x\, </math>:
  
  
Rad 157: Rad 155:
 
-webkit-border-radius: 5px;
 
-webkit-border-radius: 5px;
 
-moz-border-radius: 5px;
 
-moz-border-radius: 5px;
border-radius: 5px;">Funktionen <math> \, H(x) \, </math> är diskontinuerlig i <math> \, x = 0 </math>.
+
border-radius: 5px;">Funktionen <math> \, sgn(x) \, </math> är diskontinuerlig i <math> \, x = 0 </math>.
  
 
Den är kontinuerlig för alla <math> \, x \neq 0 </math>.
 
Den är kontinuerlig för alla <math> \, x \neq 0 </math>.
Rad 163: Rad 161:
  
  
Skulle man få frågan om Heavisidefunktionen <math> \, H(x) \, </math> i sin helhet är kontinuerlig eller diskontinuerlig, vore det korrekta svaret diskontinuerlig, eftersom den är diskontinuerlig i sitt definitionsområde. Diskontinuiteten i <math> \, x=0 \, </math> tillhör nämligen funktionens definitionsområde.
+
I sin helhet är Signumfunktionen <math> \, sgn(x) \, </math> diskontinuerlig, eftersom den är diskontinuerlig i sitt definitionsområde. Diskontinuiteten i <math> \, x=0 \, </math> tillhör nämligen funktionens definitionsområde.
  
Resultatet kan också ses i grafen: Endast i <math> \, x=0 \, </math> har den ett hopp, annars är grafen sammanhängande.
+
Grafen visar samma resultat: Endast i <math> \, x=0 \, </math> har den ett hopp, annars är grafen sammanhängande.
 
</div> <!-- exempel2 -->
 
</div> <!-- exempel2 -->
  
Rad 186: Rad 184:
  
 
<div class="tolv"> <!-- tolv4 -->
 
<div class="tolv"> <!-- tolv4 -->
I [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Exempel_2|<b><span style="color:blue">Exempel 2</span></b>]] är Heavisidefunktionen inte kontinuerlig för <math> \, x = 0\, </math> därför att <math> \, H(x) \, </math> har ett <b><span style="color:red">hopp</span></b> i sitt förlopp just i <math> \, x = 0 </math>. Den har ett väl definierat värde för <math> \, x = 0 </math>, nämligen <math> \, H(0) = 0 </math>. Men hoppet från <math> \, -1 \, </math> till <math> \, 0 \, </math> och vidare från <math> \, 0 \, </math> till <math> \, 1 \, </math> gör att det uppstår en diskontinuitet just där. Att denna diskontinuitet är av en annan typ än oändlighetsstället i [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Exempel_1|<b><span style="color:blue">Exempel 1</span></b>]] är uppenbart. Till skillnad från Exempel 1 är funktionen i alla fall beräknebar, trots diskontinuiteten. Ja, den är t.o.m en bra modell för verkligheten, för så beter sig en signal när den hoppar från noll till ett, nämligen diskontinuerligt.
+
I [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Exempel_2|<b><span style="color:blue">Exempel 2</span></b>]] är Signumfunktionen inte kontinuerlig för <math> \, x = 0\, </math> därför att <math> \, sgn(x) \, </math> har ett <b><span style="color:red">hopp</span></b> i sitt förlopp just i <math> \, x = 0 </math>. Den har ett väl definierat värde för <math> \, x = 0 </math>, nämligen <math> \, sgn(0) = 0 </math>. Men hoppet från <math> \, -1 \, </math> till <math> \, 0 \, </math> och vidare från <math> \, 0 \, </math> till <math> \, 1 \, </math> gör att det uppstår en diskontinuitet just där. Att denna diskontinuitet är av en annan typ än oändlighetsstället i [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Exempel_1|<b><span style="color:blue">Exempel 1</span></b>]] är uppenbart. Till skillnad från Exempel 1 är funktionen i alla fall beräknebar, trots diskontinuiteten. Ja, den är t.o.m en bra modell för verkligheten, för så beter sig en signal när den hoppar från noll till ett, nämligen diskontinuerligt.
  
 
Det finns även andra typer av diskontinuitet, men <b><span style="color:red">oändlighetsställe</span></b> och <b><span style="color:red">hopp</span></b> är de oftast förekommande hos kontinuerliga funktioner.
 
Det finns även andra typer av diskontinuitet, men <b><span style="color:red">oändlighetsställe</span></b> och <b><span style="color:red">hopp</span></b> är de oftast förekommande hos kontinuerliga funktioner.

Nuvarande version från 12 april 2021 kl. 17.22

        <<  Förra demoavsnitt          Genomgång          Övningar          Fördjupning          Nästa demoavsnitt  >>      


I genomgången sades att kontinuerlig betydde sammanhängande.

Som exempel på en kontinuerlig funktion ritades grafen till en linjär funktion med en sammanhängande rät linje. Kontinuerliga funktioners grafer kan man rita utan att lyfta pennan. Allt detta är fortfarande sant, men sådana resonemang är intuitiva.

Här följer en mer exakt matematisk definition för när en funktion är kontinuerlig och när den är diskontinuerlig:

Allmän definition för kontinuerliga funktioner


En funktion \( \, y = f(x) \, \) är   kontinuerlig för \( {\color{Red} {x = a}} \)   om den är definierad för \( \, x = a \, \) och om:

\[ f(x) \to f(a) \quad {\rm när} \quad x \to a \]

Om däremot \( \, f(x) \, \) är definierad för \( \, x = a \, \), men \( f(x) \) inte \( \to f(a) \; {\rm när} \; x \to a \)

är funktionen diskontinuerlig i \( \, x = a \).


Läs den andra raden i definitionen så här: \( \; {\rm " }f(x) \, \) går mot \( f(a)\, \) när \( x\, \) går mot \( a \, {\rm "} \).

Observera att definitionen är punktvis, dvs den talar om när en funktion är kontinuerlig för ett visst \( {\color{Red} x}\, \)-värde nämligen för \( {\color{Red} {x = a}}\, \).

Man skulle kunna lägga till att en funktion i sin helhet är kontinuerlig om den är kontinuerlig för alla \( \, x\, \). Då måste även kontinuitet prövas för varje \( \, x\, \).


Exempel 1

Låt oss titta på följande rationell funktion:

\( \displaystyle{y = {5 \over x \, - \, 1}} \)
          med grafen:           Y 5 div x 1.jpg


a)   Är denna funktion kontinuerlig för \( {\color{Red} {x = 1}} \, \) enligt definitionen ovan?

Vi ersätter \( \, {\color{Red} a} \, \) med \( \, {\color{Red} 1} \) i definitionen. Där stär: "... om den (funktionen) är definierad för \( \, x = a \, \) OCH ... ."

Men \( f(x) \, = \, \displaystyle{5 \over x \, - \, 1}\) är inte definierad för \( {\color{Red} {x = 1}} \, \). Därför kan den inte heller vara kontinuerlig för \( {\color{Red} {x = 1}} \, \).


b)   Är samma funktion kontinuerlig för \( {\color{Red} {x = 2}} \, \) enligt definitionen ovan?

I definitionen ersätter vi \( \, {\color{Red} a} \, \) med \( \, {\color{Red} 2} \) och \( \, f(x) \, \) med \( \displaystyle{5 \over x \, - \, 1}\).

Definitionen säger: \( \, f(x) = \displaystyle{5 \over x \, - \, 1} \, \) är kontinuerlig för \( \, {\color{Red} {x = 2}}\, \) om \( \, \displaystyle{5 \over x \, - \, 1} \to f(2) = \displaystyle{5 \over 2 \, - \, 1} = 5 \quad {\rm när} \quad x \to 2 \).

Vi kontrollerar detta i funktionsuttrycket: Låter vi \( \, x \, \) gå mot \( \, 2 \, \), går \( \, y \, \) mot värdet \( \, 5 \), och slutligen är \( \, f(2) = 5 \).

Detta visar också att \( \, f(x) = \displaystyle{5 \over x \, - \, 1} \) är definierad för \( \, x = 2\, \). Därmed är kontinuitetens krav uppfyllt.

Slutsats:   Funktionen \( \, y = \displaystyle{5 \over x \, - \, 1} \, \) är kontinuerlig för \( \, x = 2\, \).


På samma sätt kan man undersöka om funktionen är kontinuerlig för andra \( \, x \). Sammanfattningsvis blir resultatet:


Funktionen \( \; y = \displaystyle{5 \over x \, - \, 1} \; \) är kontinuerlig för alla \( \, x \, \) där den är definierad, dvs för alla \( \, x \, \neq \, 1 \, \).


Grafen visar samma resultat: Endast i \( \, x \, = \, 1 \, \) där funktionen inte är deifinierad, skenar kurvorna iväg mot oändligheten, den ena mot \( \, + \infty\, \), den andra mot \( \, - \infty\, \). I funktionens definitionsområde (alla \( \, x \, \neq \, 1 \, \)) är kurvan sammanhängande.


Exempel 2 Teckenfunktionen

Även kallad Signumfunktionen som är definierad för alla reela tal \( \, x \, \):

\( y \, = \, sgn(x) \, = \, \begin{cases} -1 & \mbox{om } x < 0 \\ 0 & \mbox{om } x = 0 \qquad x \;\mbox{reellt tal} \\ 1 & \mbox{om } x > 0 \end{cases} \)
          med grafen:           Heaviside 80.jpg


De ihåliga ringarna i grafen vid \( \, y = 1 \, \) och \( \, y = -1 \, \) betyder att dessa värden inte tillhör funktionens värdemängd, dvs \( \, sgn(0) \, \neq \, 1 \, \) och \( \, sgn(0) \, \neq \, -1 \).

Den ifyllda ringen vid origo innebär att detta värde tillhör värdemängden, dvs \( \, sgn(0) \, = \, 0 \).

Precis som hos Fibonaccis funktion är en och samma funktion definierad med olika funktionsuttryck i olika delar av dess definitionsmängd.

Kanske kan formeln ovan samt grafen, inkl. de ihåliga och ifyllda ringarna, förstås bättre med följande förenkling (OBS! Matematiskt inte korrekt):

\[\begin{array}{rcl} sgn(\mbox{negativa}\; x) & = & -1 \\ sgn(0) & = & 0 \\ sgn(\mbox{positiva}\; x) & = & 1 \end{array}\]

Dvs \( \, sgn(x) \, \) har för negativa \( \, x \, \) värdet \( \, -1 \, \), för \( \, x = 0 \, \) värdet \( \, 0 \, \) och för positiva \( \, x \, \) värdet \( \, 1 \, \).


Låt oss nu med hjälp av den allmänna definitionen för kontinuerliga funktioner undersöka om Signumfunktionen är kontinuerlig för \( \, {\color{Red} {x = 0}} \).

Enligt definitionen borde då \( \; sgn(x) \to sgn(0) \quad {\rm när} \quad x \to 0 \).

Närmar man sig \( \, 0 \, \) på \( \, x\)-axeln från höger närmar sig \( \, sgn(x) \, \) värdet \( \, 1 \).

Närmar man sig \( \, 0 \, \) från vänster närmar sig \( \, sgn(x) \, \) värdet \( \, -1 \).

Dvs \( \, sgn(x) \to 1 \, \) och \( \to -1\, \) när \( \, x \to 0 \).

Men \( \, sgn(0) = 0 \, \). \( \, sgn(x) \, \) går dock inte mot \( \, sgn(0) = 0 \, \) när \( \, x \to 0 \), vilket den borde göra om den hade varit kontinuerlig för \( \, x = 0 \).

Därmed är kontinuitetens krav inte uppfyllt. Funktionen \( \, sgn(x) \, \) är inte kontinuerlig för \( \, x = 0 \).


Undersökar man vidare kontinuiteten för andra \( x\, \) kommer det att visa sig att \( sgn(x)\, \) är kontinuerlig för alla andra \( x\, \):


Funktionen \( \, sgn(x) \, \) är diskontinuerlig i \( \, x = 0 \).

Den är kontinuerlig för alla \( \, x \neq 0 \).


I sin helhet är Signumfunktionen \( \, sgn(x) \, \) diskontinuerlig, eftersom den är diskontinuerlig i sitt definitionsområde. Diskontinuiteten i \( \, x=0 \, \) tillhör nämligen funktionens definitionsområde.

Grafen visar samma resultat: Endast i \( \, x=0 \, \) har den ett hopp, annars är grafen sammanhängande.


Olika typer av diskontinuitet

Jämför man Exempel 1 med Exempel 2 kan man konstatera: Båda funktionerna är kontinuerliga för alla \( \, x \, \) förutom för en isolerad punkt. Men funktionernas definition \(-\) och även graferna \(-\) visar ändå en ganska markant skillnad. Faktiskt handlar det om två helt olika typer av diskontinuitet i de isolerade punkterna:


Diskontinuitet av typ oändlighetsställe

I Exempel 1 är funktionen inte kontinuerlig för \( \, x = 1 \, \) därför att \( \, \displaystyle{y = {5 \over x \, - \, 1}} \, \) överhuvudtaget inte är definierad för \( x = 1\, \). Kurvorna skenar iväg mot oändligheten, den ena mot \( \, + \infty \, \), den andra mot \( \, - \infty \). Detta beror förstås på funktionsuttrycket som inte är definierad för \( \, x = 1 \). Vi har ett slags oändlighetsställe i \( x = 1\, \) vilket är ganska typiskt för rationella funktioner. Den här typen av diskontinuitet är en konsekvens av funktionens icke-definierbarhet i \( \, x = 1\, \). Annars är funktionen kontinuerlig i sin definitionsmängd.


Diskontinuitet av typ hopp

I Exempel 2 är Signumfunktionen inte kontinuerlig för \( \, x = 0\, \) därför att \( \, sgn(x) \, \) har ett hopp i sitt förlopp just i \( \, x = 0 \). Den har ett väl definierat värde för \( \, x = 0 \), nämligen \( \, sgn(0) = 0 \). Men hoppet från \( \, -1 \, \) till \( \, 0 \, \) och vidare från \( \, 0 \, \) till \( \, 1 \, \) gör att det uppstår en diskontinuitet just där. Att denna diskontinuitet är av en annan typ än oändlighetsstället i Exempel 1 är uppenbart. Till skillnad från Exempel 1 är funktionen i alla fall beräknebar, trots diskontinuiteten. Ja, den är t.o.m en bra modell för verkligheten, för så beter sig en signal när den hoppar från noll till ett, nämligen diskontinuerligt.

Det finns även andra typer av diskontinuitet, men oändlighetsställe och hopp är de oftast förekommande hos kontinuerliga funktioner.





Copyright © 2011-2018 Math Online Sweden AB. All Rights Reserved.