Skillnad mellan versioner av "1.2 Räkneordning"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(210 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Om tal|<-- Förra avsnitt]]}}
+
{{Not selected tab|[[1.1 Om tal| <<&nbsp;&nbsp;Förra avsnitt]]}}
 
{{Selected tab|[[1.2 Räkneordning|Genomgång]]}}
 
{{Selected tab|[[1.2 Räkneordning|Genomgång]]}}
 
{{Not selected tab|[[1.2 Övningar till Räkneordning|Övningar]]}}
 
{{Not selected tab|[[1.2 Övningar till Räkneordning|Övningar]]}}
{{Not selected tab|[[Diagnosprov i Matte 1c kap 1 Aritmetik|Diagnosprov kap 1]]}}
+
{{Not selected tab|[[1.3 Decimaltal|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
 +
<!-- [[Media: Lektion 2 Rakneordning Ruta.pdf|<b><span style="color:blue">Lektion 2 Räkneordning</span></b>]] -->
  
[[Media: Lektion 2 Rakneordning Ruta.pdf|<strong><span style="color:blue">Lektion 2 Räkneordning</span></strong>]]
+
== <b><span style="color:#931136">Hur räknar du?</span></b> ==
 +
<div class="ovnE">
 +
[[Image: Hur raknar du 20a.jpg]]
  
__TOC__
+
<b><span style="color:red">Vanligt fel:</span></b> <math> \quad\;\;\, 6 \, + \, 3 \cdot 5 \, = \, 9 \cdot 5 \, = \, 45 </math>
  
 +
<b>Rätt<span style="color:black">:</span></b> <math> \qquad\qquad 6 \, + \, 3 \cdot 5 \, = \, 6 \, + \, (3 \cdot 5) \, = \, 6 \, +\, 15 \, = \, 21 </math>
  
== Hur räknar du? ==
+
</div>  <!-- exempel -->
[[Image:Fig1_2_1.jpg]]
+
  
:<math> {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 6 \, + \, 3 \cdot 5 \, = \, 9 \cdot 5 \, = \, 45 </math>
+
<div class="tolv"> <!-- tolv1 -->
 +
Men varför är <math> \, 21 \, </math> rätt och <math> \, 45 \, </math> fel? Pga följande regel som är en överenskommelse mellan matematiker i hela världen:
 +
</div> <!-- tolv1 -->
  
:<math> {\rm {\color{White} {OBS!}}\quad Rätt:} \qquad\qquad\! 6 \, + \, 3 \cdot 5 \, = \, 6 \, + \, (3 \cdot 5) \, = \, 6 \, +\, 15 \, = \, 21 </math>
+
<div class="border-divblue"><b>Multiplikation går före addition.</b></div>
  
För att visa hur man tänkt skriver man på det rätta sättet ovan. Men varför är <math> \, 21 \, </math> rätt och <math> \, 45 \, </math> fel?
+
<div class="tolv"> <!-- tolv1a -->
 +
Denna regel används när båda räkneoperationerna <math> \, + \, </math> och <math> \, \cdot\;</math> är inblandade.
  
Om du lärt dig räkneordning vet du att räkneordningen inte alltid följer skrivordningen utan snarare följande regel:
+
Operationen <math> \, \cdot\;</math> har högre prioritet än operationen <math> \, + \, </math> dvs <math> \, \cdot\;</math> måste alltid räknas före <math> \, + \, </math> varför <math> \, 3 \, </math> gånger <math> \, 5 \, </math> måste räknas först och <math> \, 6 \, + \, 15 \, </math> sedan.
  
 +
Är denna regel något vi bara måste acceptera eller finns det någon logisk förklaring för den? För att besvara frågan måste vi fundera på vad vi egentligen gör när vi multiplicerar.
 +
</div> <!-- tolv1 -->
  
<div style="border:1px solid black;
 
display:inline-block !important;
 
margin-left: 30px !important;
 
padding:10px 20px 10px 20px;
 
border-radius: 15px;"><big><b>Multiplikation går före addition.</b></big>
 
</div>
 
  
 +
== <b><span style="color:#931136">Varför går multiplikation före addition?</span></b> ==
 +
<div class="tolv"> <!-- tolv2 -->
  
Denna regel används när båda räkneoperationerna <math> \, + \, </math> och <math> \, \cdot\;</math> är inblandade. Man säger: Operationen <math> \, \cdot\;</math> har högre prioritet än operationen <math> \, + \, </math> dvs <math> \, \cdot\;</math> måste alltid räknas före <math> \, + \, </math> varför <math> \, 3 \, </math> gånger <math> \, 5 \, </math> måste räknas först och <math> \, 6 \, + \, 15 \, </math> sedan.
+
<b>Ex.:</b> <math> \qquad\qquad 6 \, + \, {\color{Red} 3} \cdot 5 \, = \, 6 \, + \, (3 \cdot 5) \, = \, 6 \, +\, 15 \, = \, 21 </math>
  
Är denna regel något vi bara måste acceptera eller finns det någon logisk förklaring för den? För att besvara frågan måste vi fundera på vad vi egentligen gör när vi multiplicerar.
+
<b>Varför?</b> <math> \qquad {\color{Red} 3} \, \cdot \, 5 \, </math> kan uppfattas som<span style="color:black">:</span> <math> \qquad {\color{Red} 3} \, \cdot \, 5 \; = \; \underbrace{5 \, + \, 5 \, + \, 5}_{{\color{Red} 3}\;\times} </math>
  
 +
När vi sedan lägger till <math> \, 6 \, + \, </math> i början och ersätter <math> \, {\color{Red} 3} \cdot 5 \, </math> med <math> \, 5 \, + \, 5 \, + \, 5 \, </math> ser vi att <math> \, {\color{Red} 3} \, </math> inte längre finns med i räkneprocessen<span style="color:black">:</span> 
  
== Varför går multiplikation före addition? ==
+
:::<math> 6 \, + \quad {\color{Red} 3} \, \cdot \, 5 \; = \; 6 \, + \quad \underbrace{5 \, + \, 5 \, + \, 5}_{{\color{Red} 3}\;\times} \, = \, 6 \, +\, 15 \, = \, 21 </math>
  
När vi tar <math> \, {\color{Red} 3} \, </math> gånger <math> \, 5 \, </math> kan multiplikationen <math> \, {\color{Red} 3} \, \cdot \, 5 \, </math> definieras som en förkortning för <strong><span style="color:red">upprepad addition</span></strong> av <math> \, 5 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger, dvs:
+
Därför är det fel att addera <math> \, 6 \, </math> med <math> \, {\color{Red} 3} \, </math> när man ska beräkna <math> \; 6 \, + \, {\color{Red} 3} \cdot 5 \, </math>.
  
:::::<math> {\color{Red} 3} \, \cdot \, 5 \; = \; \underbrace{5 \, + \, 5 \, + \, 5}_{{\color{Red} 3}\;\times} </math>
+
<math>{\color{Red} 3} \, \cdot \, 5 \; </math> kan uppfattas som en förkortning för <b><span style="color:red">upprepad addition</span></b> av <math> \, 5 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.
  
När vi sedan lägger till <math> \, 6 \, + \, </math> och fortsätter att tolka multiplikationen som en upprepad addition ser vi att <math> \, {\color{Red} 3} \, </math> inte längre finns med som ett led i räkneprocessen:
+
<math> {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att <math> \, 5 \, </math> ska adderas <math> \, {\color{Red} 3} \, </math> gånger med sig själv.
  
:::<math> 6 \, + \quad {\color{Red} 3} \, \cdot \, 5 \; = \; 6 \, + \quad \underbrace{5 \, + \, 5 \, + \, 5}_{{\color{Red} 3}\;\times} \, = \, 6 \, +\, 15 \, = \, 21 </math>
+
Vi förstår prioritetsregeln <math> \; \cdot \; </math> går före <math> \; + \; </math> bättre genom att tolka multiplikationen som en upprepad addition.
  
Här kan man inte längre räkna fel, för <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen utan endast en information i förkortningen av den upprepade additionen, dvs antalet gånger som <math> \, 5 \, </math> ska adderas med sig själv.
+
Tanken kan vidareföras: Även <b><span style="color:red">division</span></b> kan tolkas som <b><span style="color:red">upprepad subtraktion</span></b>. När vi t.ex. räknar <math> 30 \, / \, 5 \, </math> kan vi skriva så här<span style="color:black">:</span>
  
Här ser man, varför det är fel att börja addera <math> \, 6 \, </math> till <math> \, {\color{Red} 3} \, </math> när man ska beräkna <math> \; 6 \, + \, {\color{Red} 3} \cdot 5 \, </math>.
+
:::::<math> 30 \; \underbrace{- \, 5 \, - \, 5 \, - \, 5 \, - 5 \, - 5 \, - \,5}_{{\color{Red} 6}\;\times} \; = \; 0 \qquad {\rm dvs} \qquad 30 \, / \, 5 \; = \; {\color{Red} 6}\,, \;\; {\rm rest\;\;} 0 </math>
  
På köpet ger oss förklaringen ovan insikten om att <strong><span style="color:red">multiplikation</span></strong> inte är en ny, genuin räkneoperation utan är endast <strong><span style="color:red">upprepad addition</span></strong>.
+
Denna tolkning av division kommer även att hjälpa oss att förstå [[Varför_är_division_med_0_inte_definierad%3F#Teoretisk_f.C3.B6rklaring|<b><span style="color:blue">varför man inte får dividera med 0</span></b>]].
 +
</div> <!-- tolv2 -->
  
Samma sak är det nämligen med <strong><span style="color:red">division</span></strong>. Inte heller division är en ny, genuin räkneoperation utan är endast <strong><span style="color:red">upprepad subtraktion</span></strong>. När vi t.ex. delar <math> \, 30 \, </math> med <math> \, 5 \, </math> görs i själva verket följande:
 
  
:::::<math> 30 \, / \, 5 \; = \; 30 \; \underbrace{- \, 5 \, - \, 5 \, - \, 5 \, - 5 \, - 5 \, - \,5}_{{\color{Red} 6}\;\times} \; = \; 0 \qquad {\rm dvs} \qquad 30 \, / \, 5 \; = \; {\color{Red} 6}\,, \;\; {\rm rest\;\;} 0 </math>
+
== <b><span style="color:#931136">De fyra räknesättens prioritetsregler</span></b> ==
 +
<div class="tolv"> <!-- tolv3 -->
  
  
== De fyra räknesättens prioritetsregler ==
+
<div class="border-divblue">[[Image: De 4 raknesattens prioritetsregler 20.jpg]]</div>
:[[Image:Fig1_2_2.jpg]]
+
 
  
 
Både multiplikation och division har alltså högre prioritet än addition och subtraktion.  
 
Både multiplikation och division har alltså högre prioritet än addition och subtraktion.  
Rad 69: Rad 76:
  
 
Multiplikation har samma prioritet som division.
 
Multiplikation har samma prioritet som division.
 +
</div> <!-- tolv3 -->
  
  
== Exempel 1 ==
+
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 1</span></b> ==
  
 
Vad ger följande uttryck?
 
Vad ger följande uttryck?
  
:::<math>12-2\cdot3+6</math>
+
:::<math> 12 \, - \, 2 \cdot 3 \, + \, 6 </math>
  
Det vanligaste felet man gör är att börja räkna <math>12-2</math>. Istället för att börja räkna måste man titta på hela uttrycket. Då konstaterar man att det finns operatorer med olika prioriteter nämligen <math>+</math> och <math>\cdot\;</math> vilket innebär att prioritetsreglerna måste användas:
+
Som det sades inledningsvis är det vanligaste felet att börja räkna <math> \, 12 \, - \, 2 \, </math>. Istället för att börja räkna är det bättre att först titta på hela uttrycket. Då ser man att operatorerna <math> \, + \, </math> och <math> \, \cdot\;</math> är inblandade vilket innebär att prioritetsreglerna måste användas<span style="color:black">:</span>
  
:::<math>12-2\cdot3+6=12-(2\cdot3)+6=12-6+6=12-0=12</math>
+
:::<math> 12 \, - \, 2 \cdot 3 \, + \, 6 \, = \, 12 \, - \, (2 \cdot 3) \, + \, 6 \, = \, 12 \, - \, 6 \, + \, 6 \, = \, 12</math>
  
Parentesen är här endast till för att förtydliga hur man tänkt och räknat. Observera också likhetstecknets korrekta användning. Skriver man en kedja av likheter för att visa alla mellansteg måste man beakta att det verkligen står exakt samma sak på båda sidor av likhetstecknen. Därför måste t.ex. talet 12 upprepas i alla mellansteg ända till slutet för att upprätthålla likheterna, även om man inte räknar med 12 förrän i det allra sista steget. Genom skicklig användning av räkneordning kan man minimera räknearbetet.
+
Parentesen är här endast till för att förtydliga hur man tänkt och räknat. Beakta uppgiftens redovisning som en <b><span style="color:red">kedja av likheter</span></b> för att visa alla mellansteg. Likhetstecknets korrekta användning innebär att det verkligen står exakt samma sak på båda sidor av likhetstecknen. Därför måste t.ex. talet <math> \, 12 \, </math> upprepas i alla mellansteg ända till slutet för att upprätthålla likheterna, även om man inte räknar med <math> \, 12 \, </math> förrän i det allra sista steget.
 +
<!-- Genom skicklig användning av räkneordning kan man minimera räknearbetet. -->
 +
</div>
  
  
== Exempel 2 ==
+
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 2</span></b> ==
  
Här har vi ett lite större uttryck med parenteser:
+
Här har vi ett lite större uttryck med parenteser<span style="color:black">:</span>
  
 
:::<math>(50+14)-8\cdot3+4</math>
 
:::<math>(50+14)-8\cdot3+4</math>
  
Om vi endast tillämpar det vi lärt oss i det här avsnittet dvs räknar först multiplikationen blir lösningen följande:  
+
Om vi endast tillämpar det vi lärt oss i det här avsnittet dvs räknar först multiplikationen blir lösningen följande<span style="color:black">:</span>
  
 
:::<math>(50+14)-8\cdot3+4 = (50+14)-24+4 = 64-24+4 = 40+4 = 44</math>
 
:::<math>(50+14)-8\cdot3+4 = (50+14)-24+4 = 64-24+4 = 40+4 = 44</math>
  
Men även följande lösning är helt korrekt:
+
Men även följande lösning är helt korrekt<span style="color:black">:</span>
  
 
:::<math>(50+14)-8\cdot3+4 = 64-8\cdot3+4 = 64-24+4 = 40+4 = 44</math>
 
:::<math>(50+14)-8\cdot3+4 = 64-8\cdot3+4 = 64-24+4 = 40+4 = 44</math>
  
Här har man löst upp parentesen först vilket inte alls står i motsägelse till prioritetsreglerna. Inom parentesen finns ju ingen annan operator än <math>+</math> så att det inte uppstår något problem vad gäller operatorprioritet. I nästa steg räknas 8 gånger 3 först och dras av sedan från 64. Viktigt är att man efter första likhetstecknet inte begår felet att räkna <math>64-8</math> utan tar först 8 gånger 3.
+
Här har man löst upp parentesen först vilket inte alls står i motsägelse till prioritetsreglerna. Inom parentesen finns ju ingen annan operator än <math> \, + \, </math> så att det inte uppstår något problem vad gäller operatorprioritet. I nästa steg räknas <math> \, 8 \, </math> gånger <math> \, 3 \, </math> först och dras av sedan från <math> \, 64 \, </math>. Viktigt är att man efter första likhetstecknet inte begår felet att räkna <math>64-8</math> utan tar först <math> \, 8 \, </math> gånger <math> \, 3 \, </math>.
  
Frågan som uppstår nu är: Vilken av de två lösningarna ovan är bättre? Just i det här exemplet spelar det ingen roll. Men generellt kommer vi att se att det i större sammanhang är bättre att lösa upp paranteser först, dvs att räkna deras innehåll så att man kan ta bort dem. Sedan kan man följa operatorernas prioritetsregler.
+
Frågan som uppstår nu är: Vilken av de två lösningarna ovan är bättre? Just i det här exemplet spelar det ingen roll. Men generellt kommer vi att se att det i större sammanhang är bättre att lösa upp parenteser först, dvs att räkna deras innehåll så att man kan ta bort dem. Sedan kan man följa operatorernas prioritetsregler.
 +
</div>
  
  
== Exempel 3 ==
+
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 3</span></b> ==
  
'''Problem:''' Beräkna utan miniräknare:  
+
'''Problem:''' Beräkna utan miniräknare<span style="color:black">:</span>
  
 
:::<math>24 - (8-4) - 36/6 + 5\cdot4</math>
 
:::<math>24 - (8-4) - 36/6 + 5\cdot4</math>
 
'''Svar:''' <math> 34 </math>
 
  
 
'''Lösning:'''
 
'''Lösning:'''
Rad 116: Rad 128:
  
 
Här har vi förkortat lösningen genom att sammanfatta beräkningen av parentesen, divisionen och multiplikationen i det första mellansteget.
 
Här har vi förkortat lösningen genom att sammanfatta beräkningen av parentesen, divisionen och multiplikationen i det första mellansteget.
 +
</div>
  
  
== Exempel 4 ==
+
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 4</span></b> ==
  
'''Problem:''' Beräkna utan räknare och kontrollera resultatet med räknaren:  
+
'''Problem:''' Beräkna utan räknare och kontrollera resultatet med räknaren<span style="color:black">:</span>
  
 
:::<math>\left({16-4 \over 3} + 7\right) \cdot 2 - 9/3 + 1 </math>
 
:::<math>\left({16-4 \over 3} + 7\right) \cdot 2 - 9/3 + 1 </math>
Rad 126: Rad 140:
 
'''Lösning:'''
 
'''Lösning:'''
  
:::<math> \displaystyle \left({16-4 \over 3} + 7\right)\,\cdot\,2\,-\,9/3\,+\,1 = \left({12 \over 3} + 7\right)\,\cdot\,2\,-\,3\,+\,1 = (4+7)\,\cdot\,2\,-\,3\,+\,1 =  </math>
+
:::<math> \displaystyle \left({16-4 \over 3} + 7\right)\,\cdot\,2\,-\,9/3\,+\,1 = \left({12 \over 3} + 7\right)\,\cdot\,2\,-\,3\,+\,1 \, = (4+7)\,\cdot\,2\,-\,3\,+\,1 =  </math>
  
:::<math> = 11\,\cdot\,2\,-\,3\,+\,1 = 22\,-\,3\,+\,1 = 22\,-\,3\,+\,1 = 19\,+\,1 = 20 </math>
+
:::<math> = \, 11\,\cdot\,2\,-\,3\,+\,1 = 22\,-\,3\,+\,1 = 19\,+\,1 = 20 </math>
  
Här har vi i det första mellansteget börjat att beräkna parentesen och samtidigt utfört divisionen <math>9/3</math> för att skriva lite mindre. Upplösningen av parentesen fortsätter i det andra mellansteget medan divisionen är avslutad och resultatet tas med i de följande mellanstegen tills parentesen är upplöst och multiplikationen med 2 genomförd.
+
Här har vi i det första mellansteget börjat att beräkna parentesen och samtidigt utfört divisionen <math>9/3</math> för att skriva lite mindre. Upplösningen av parentesen fortsätter i det andra mellansteget medan divisionen är avslutad och resultatet tas med i de följande mellanstegen tills parentesen är upplöst och multiplikationen med <math> \, 2 \, </math> genomförd.
 +
</div>
  
  
Vad händer när parenteser är inblandade? Med parenteser kan man bryta prioritetsordningen och styra den själv.
+
== <b><span style="color:#931136">Osynliga parenteser</span></b> ==
 +
<div class="ovnE">
 +
<table>
 +
<tr>
 +
  <td><big><b><span style="color:#931136">Exempel:</span></b></big>
  
 +
</td>
 +
  <td><math> \qquad\quad </math></td>
 +
  <td><math> \displaystyle{2+6 \over 3+1} </math></td>
 +
</tr>
 +
</table>
 +
<b><span style="color:red">Vanligt fel med digitalt verktyg:</span></b> <math> \quad 2 \, + \, 6 \, / \, 3 \, + \, 1 \, = \, 2 \, + \, 2 \, + \, 1 \, = \,  5 </math>
  
== Parenteser och osynliga multiplikationstecken ==
+
Rätt med digitalt verktyg<span style="color:black">:</span> <math> \qquad\qquad \color{Red}(2 + 6\color{Red}) / \color{Red}(3 + 1\color{Red}) \, = \, 8 \, / 4 \, = \, 2 </math>
  
Om vi i det inledande exemplet sätter parenteser kan vi bryta prioritetsordningen och få 45:
+
Rätt med papper & penna<span style="color:black">:</span> <math> \displaystyle \qquad\quad\ {2+6 \over 3+1} = {(2+6) \over (3+1)} = {8 \over 4} = 2 </math>
 +
</div>
 +
<div class="tolv"> <!-- tolv5 -->
 +
Det finns två symboler för division som gör samma sak: Divisionstecknet som t.ex. i <math> \, \displaystyle {6/3} \, </math> och bråkstrecket som i <math> \, \displaystyle {6\over 3} \, </math>.
  
::::<math>(6+3)\cdot5=9\cdot5=45</math>
+
Skillnaden är att <math> \, \displaystyle {6/3} \, </math> är en <b><span style="color:red">operation</span></b>, nämligen att dividera <math> \, 6 \, </math> med <math> \, 3 \, </math>, medan <math> \, \displaystyle {6\over 3} \, </math> är ett <b><span style="color:red">tal</span></b> i bråkform. Båda ger <math> \, 2 </math>, operationens resultat och bråket förkortat.
  
Parentesen tvingar oss här att först räkna <math>6+3</math> och sedan fortsätta med gånger 5 så att man får 45. Uttrycket till vänster är ett annat uttryck än det inledande exemplet. För att få det inledande exemplet måste paranteserna sättas så här:
+
Förklaringen för felet i exemplet ovan är "osynliga" parenteser: En av de dolda egenskaperna hos bråkstrecket är nämligen att det grupperar sin täljare <math> \, 6+2 \, </math> och nämnare <math> \, 3+1 \, </math> i osynliga parenteser, dvs i sådana som kan utelämnas. I det rätta svaret på papper (ovan) har vi synliggjort de "osynliga" parenteserna.
  
::::<math>6+(3\cdot5)=6+15=21</math>
+
Och då ser man att det är parenteserna som måste beräknas först. Det är inte fel att i bråkformen även skriva de osynliga parenteserna kring täljaren <math> \, 2 \, + \, 6 \, </math> och nämnaren <math>3+1</math>, men de är onödiga. Man brukar utelämna dem därför att bråkstrecket själv gör det redan tydligt att det är ''hela'' <math> \, 2 \, + \, 6 \, </math> som ska delas med ''hela'' <math> \, 3 \, + \, 1</math>.
  
Nu är uttrycket till vänster identiskt med det inledande exemplet. Man kan också säga att det fanns i det inledande exemplet "osynliga" parenteser. Det är sådana som ''kan'' utelämnas utan att någon ändring sker. Nu har vi gjort dem synliga. De gör exakt samma sak som prioritetsregeln "multiplikation går före addition". Därför utelämnar man dem vanligtvis och låter prioritetsregeln göra jobbet. Men det är inte heller fel att skriva parenteserna för tydlighetens skull.
+
Vill man därmot skriva om divisionen med bråkstrecket till divisionen med divisionstecknet kan man göra det. Båda former är identiska<span style="color:black">:</span>
  
Det finns inte bara osynliga parenteser. Det är de som kan utelämnas utan problem. Det finns även osynliga multiplikationstecken. De kan också utelämnas utan att någon ändring av uttryckets värde förekommer. I exemplet ovan som inledde "Parenteser" kan man faktiskt utelämna multiplikationstecknet och skriva:
+
::::<math> {2+6 \over 3+1} = (2+6) / (3+1) \, = \, 8 \, / 4 \, = \, 2 </math>
  
::::<math>(6+3)\,5</math>
+
I divisionsformen får man till skillnad från bråkformen inte utelämna parenteserna. Annars blir det ett annat uttryck och ett annat resultat<span style="color:black">:</span>
  
som ger exakt samma värde 9 gånger 5 = 45 som ovan. Det gör man helt enkelt för att skriva lite mindre så att det blir enklare, av samma anledning förresten som för osynliga parenteser. Självklart kan man inte alltid utelämna multiplikationstecken, t.ex. inte mellan två rena siffror eller tal som ska multipliceras. Läsligheten får ju inte lida. I uttrycket <math>(6+3)\,5</math> är det parentesen som gör att multiplikationstecknet kan utelämnas. I sådana fall måste vi tänka oss först det osynliga multiplikationstecknet och räkna sedan. Se övning 5 i detta avsnitt.
+
::::<math>2 \, + \, 6 \, / \, 3 \, + \, 1 \, = \, 2 \, + \, (6 \, / \, 3) \, + \, 1 \, = \, 2 \, + \, 2 \, + \, 1  \, = \, 5 </math>
  
 +
Detta pga prioritetsregeln "Division går före addition".
  
== Bråkstreck vs. snedstreck ==
+
'''Slutsats:'''
 +
</div> <!-- tolv5 -->
 +
<div class="border-divblue"><b>Bråkstreck inkluderar parentes.</b></div>
  
Det finns två symboler för division: Snedstrecket som t.ex. i <math> \, \displaystyle {6/3} \, </math> och bråkstrecket som i <math> \, \displaystyle {6\over 3} \, </math> vars resultat är det samma, nämligen <math> \, 2 \, </math>. Skillnaden är att <math> \, \displaystyle {6/3} \, </math> är en operation, nämligen att dividera <math> \, 6 \, </math> med <math> \, 3 \, </math>, medan <math> \, \displaystyle {6\over 3} \, </math> är ett tal, närmare bestämt ett tal i bråkform.
 
  
Hur blir det när flera operationer blir inblandade i ett uttryck som involverar bråkstrecket:
+
== <b><span style="color:#931136">Parenteser och osynliga multiplikationstecken</span></b> ==
 +
<div class="tolv"> <!-- tolv4 -->
 +
Vad händer när parenteser är inblandade? Med parenteser kan man bryta prioritetsordningen och styra själv räknegången.
  
::::<math> 6+2 \over 3+1 </math>  
+
Om vi i det inledande exemplet sätter parenteser kan vi bryta prioritetsordningen och få <math> \, 45 \, </math><span style="color:black">:</span>
  
Hur ska man här använda prioritetsregeln "Division går före addition"? Det går ju inte att dividera först och addera sedan. Vad ska i så fall divideras med vad? Självklart måste man här addera först <math> \, 6+2 \, </math>, sedan <math> \, 3+1 \, </math> och slutligen dividera deras resultat <math> \, 8/4 \, </math> för att få <math> \, 2 \, </math>. Men har man då inte brutit mot regeln "Division går före addition"? Det har man faktiskt inte gjort. Och förklaringen till det är igen vissa "osynliga" parenteser. En av de dolda egenskaperna hos bråkstrecket är nämligen att det grupperar sin täljare <math> \, 6+2 \, </math> och nämnare <math> \, 3+1 \, </math> i osynliga parenteser, dvs i sådana som kan utelämnas. Sätter man in dessa i uttrycket ovan ser det ut så här:
+
::::<math>(6+3)\cdot5=9\cdot5=45</math>
  
::::<math> (6+2) \over (3+1) </math>  
+
Parentesen tvingar oss här att först räkna <math>6+3</math> och sedan fortsätta med gånger <math> \, 5 \, </math> så att man får <math> \, 45 \, </math>. Uttrycket ovan är ett annat uttryck än det inledande exemplet. För att få det inledande exemplet måste parenteserna sättas så här<span style="color:black">:</span>
  
Och då blir det plötsligt klart att det är parenteserna som enligt våra regler måste först lösas upp dvs beräknas och tas bort. Hela lösningen av den ursprungliga divisionen med bråkstreck ser alltså ut så här:
+
::::<math>6+(3\cdot5)=6+15=21</math>
  
::::<math> {6+2 \over 3+1} = {(6+2) \over (3+1)} = {8 \over 4} = 2 </math>
+
Man kan också säga att det i det inledande exemplet fanns "osynliga" parenteser. Det är sådana som ''kan'' utelämnas utan att någon ändring sker. Nu har vi gjort dem synliga. De gör exakt samma sak som prioritetsregeln "multiplikation går före addition". Därför utelämnar man dem vanligtvis och låter prioritetsregeln göra jobbet. Men det är inte heller fel att skriva parenteserna för tydlighetens skull.
  
Vill man därmot skriva om divisionen med bråkstreck till divisionen med snedstreck kan man göra det. Båda former är identiska:
+
Det finns inte bara osynliga parenteser utan även osynliga multiplikationstecken. De kan också utelämnas utan att någon ändring av uttryckets värde förekommer. I exemplet ovan kan man faktiskt utelämna multiplikationstecknet och skriva så här<span style="color:black">:</span>
  
::::<math> {6+2 \over 3+1} = (6+2) / (3+1) </math>  
+
::::<math>(6+3)\;5</math>
  
Men då är man tvungen att sätta parenteser i snedstreckformen som till skillnad från bråkformen inte får utelämnas. Det är inte fel att i bråkformen skriva de osynliga parenteserna kring täljaren <math> 6+2 </math> och nämnaren <math>3+1</math>, men de är onödiga. Man brukar utelämna dem därför att bråkstrecket själv gör det redan tydligt att det är ''hela'' <math> 6+2 </math> som ska delas med ''hela'' <math>3+1</math>. Däremot blir det ett helt annat uttryck om man utelämnar parenteserna i snedstreckformen, nämligen <math>6+2/3+1</math> som i själva verket är identiskt med <math>6+(2/3)+1</math> och ger ett helt annat värde (<math>7,666...</math>). Detta pga prioritetsregeln "Division går före addition".
+
Detta ger samma värde <math> \, 9 \, </math> gånger <math> \, 5 \, = \, 45 \, </math> som ovan.
  
 +
Självklart kan man inte alltid utelämna multiplikationstecknet, t.ex. inte mellan två rena siffror eller tal som ska multipliceras. Läsligheten får ju inte lida. I uttrycket <math> \, (6+3)\;5 \, </math> är det parentesen som gör att multiplikationstecknet kan utelämnas.
 +
</div> <!-- tolv4 -->
  
== Sammanfattning ==
 
  
 +
== <b><span style="color:#931136">Sammanfattning</span></b> ==
 +
<div class="border-divblue">
 
När både parenteser och operatorer är inblandade i ett räkneuttryck använd följande turordningsregler:
 
När både parenteser och operatorer är inblandade i ett räkneuttryck använd följande turordningsregler:
  
Rad 187: Rad 222:
  
 
3. Sist additioner och subtraktioner.
 
3. Sist additioner och subtraktioner.
 +
</div>
 +
 +
 +
== <b><span style="color:#931136">Internetlänkar</span></b> ==
 +
 +
https://www.mathsisfun.com/operation-order-pemdas.html
 +
 +
https://www.youtube.com/watch?v=lFxztfJ2bq4
  
 +
http://matematikvideo.se/lektioner/prioriteringsreglerna/
  
== Internetlänkar ==
+
http://www.matteguiden.se/rakneregler/
http://www.youtube.com/watch?v=doxCjrqxoRM
+
  
 
http://www.mathgoodies.com/lessons/vol7/order_operations.html
 
http://www.mathgoodies.com/lessons/vol7/order_operations.html
  
http://math.about.com/gi/dynamic/offsite.htm?site=http://www.funbrain.com/algebra/
 
  
  
Rad 203: Rad 245:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Taifun Alishenas. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2021 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 4 januari 2021 kl. 09.55

        <<  Förra avsnitt          Genomgång          Övningar          Nästa avsnitt  >>      


Hur räknar du?

Hur raknar du 20a.jpg

Vanligt fel: \( \quad\;\;\, 6 \, + \, 3 \cdot 5 \, = \, 9 \cdot 5 \, = \, 45 \)

Rätt: \( \qquad\qquad 6 \, + \, 3 \cdot 5 \, = \, 6 \, + \, (3 \cdot 5) \, = \, 6 \, +\, 15 \, = \, 21 \)

Men varför är \( \, 21 \, \) rätt och \( \, 45 \, \) fel? Pga följande regel som är en överenskommelse mellan matematiker i hela världen:

Multiplikation går före addition.

Denna regel används när båda räkneoperationerna \( \, + \, \) och \( \, \cdot\;\) är inblandade.

Operationen \( \, \cdot\;\) har högre prioritet än operationen \( \, + \, \) dvs \( \, \cdot\;\) måste alltid räknas före \( \, + \, \) varför \( \, 3 \, \) gånger \( \, 5 \, \) måste räknas först och \( \, 6 \, + \, 15 \, \) sedan.

Är denna regel något vi bara måste acceptera eller finns det någon logisk förklaring för den? För att besvara frågan måste vi fundera på vad vi egentligen gör när vi multiplicerar.


Varför går multiplikation före addition?

Ex.: \( \qquad\qquad 6 \, + \, {\color{Red} 3} \cdot 5 \, = \, 6 \, + \, (3 \cdot 5) \, = \, 6 \, +\, 15 \, = \, 21 \)

Varför? \( \qquad {\color{Red} 3} \, \cdot \, 5 \, \) kan uppfattas som: \( \qquad {\color{Red} 3} \, \cdot \, 5 \; = \; \underbrace{5 \, + \, 5 \, + \, 5}_{{\color{Red} 3}\;\times} \)

När vi sedan lägger till \( \, 6 \, + \, \) i början och ersätter \( \, {\color{Red} 3} \cdot 5 \, \) med \( \, 5 \, + \, 5 \, + \, 5 \, \) ser vi att \( \, {\color{Red} 3} \, \) inte längre finns med i räkneprocessen:

\[ 6 \, + \quad {\color{Red} 3} \, \cdot \, 5 \; = \; 6 \, + \quad \underbrace{5 \, + \, 5 \, + \, 5}_{{\color{Red} 3}\;\times} \, = \, 6 \, +\, 15 \, = \, 21 \]

Därför är det fel att addera \( \, 6 \, \) med \( \, {\color{Red} 3} \, \) när man ska beräkna \( \; 6 \, + \, {\color{Red} 3} \cdot 5 \, \).

\({\color{Red} 3} \, \cdot \, 5 \; \) kan uppfattas som en förkortning för upprepad addition av \( \, 5 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.

\( {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att \( \, 5 \, \) ska adderas \( \, {\color{Red} 3} \, \) gånger med sig själv.

Vi förstår prioritetsregeln \( \; \cdot \; \) går före \( \; + \; \) bättre genom att tolka multiplikationen som en upprepad addition.

Tanken kan vidareföras: Även division kan tolkas som upprepad subtraktion. När vi t.ex. räknar \( 30 \, / \, 5 \, \) kan vi skriva så här:

\[ 30 \; \underbrace{- \, 5 \, - \, 5 \, - \, 5 \, - 5 \, - 5 \, - \,5}_{{\color{Red} 6}\;\times} \; = \; 0 \qquad {\rm dvs} \qquad 30 \, / \, 5 \; = \; {\color{Red} 6}\,, \;\; {\rm rest\;\;} 0 \]

Denna tolkning av division kommer även att hjälpa oss att förstå varför man inte får dividera med 0.


De fyra räknesättens prioritetsregler


De 4 raknesattens prioritetsregler 20.jpg


Både multiplikation och division har alltså högre prioritet än addition och subtraktion.

Addition har samma prioritet som subtraktion.

Multiplikation har samma prioritet som division.


Exempel 1

Vad ger följande uttryck?

\[ 12 \, - \, 2 \cdot 3 \, + \, 6 \]

Som det sades inledningsvis är det vanligaste felet att börja räkna \( \, 12 \, - \, 2 \, \). Istället för att börja räkna är det bättre att först titta på hela uttrycket. Då ser man att operatorerna \( \, + \, \) och \( \, \cdot\;\) är inblandade vilket innebär att prioritetsreglerna måste användas:

\[ 12 \, - \, 2 \cdot 3 \, + \, 6 \, = \, 12 \, - \, (2 \cdot 3) \, + \, 6 \, = \, 12 \, - \, 6 \, + \, 6 \, = \, 12\]

Parentesen är här endast till för att förtydliga hur man tänkt och räknat. Beakta uppgiftens redovisning som en kedja av likheter för att visa alla mellansteg. Likhetstecknets korrekta användning innebär att det verkligen står exakt samma sak på båda sidor av likhetstecknen. Därför måste t.ex. talet \( \, 12 \, \) upprepas i alla mellansteg ända till slutet för att upprätthålla likheterna, även om man inte räknar med \( \, 12 \, \) förrän i det allra sista steget.


Exempel 2

Här har vi ett lite större uttryck med parenteser:

\[(50+14)-8\cdot3+4\]

Om vi endast tillämpar det vi lärt oss i det här avsnittet dvs räknar först multiplikationen blir lösningen följande:

\[(50+14)-8\cdot3+4 = (50+14)-24+4 = 64-24+4 = 40+4 = 44\]

Men även följande lösning är helt korrekt:

\[(50+14)-8\cdot3+4 = 64-8\cdot3+4 = 64-24+4 = 40+4 = 44\]

Här har man löst upp parentesen först vilket inte alls står i motsägelse till prioritetsreglerna. Inom parentesen finns ju ingen annan operator än \( \, + \, \) så att det inte uppstår något problem vad gäller operatorprioritet. I nästa steg räknas \( \, 8 \, \) gånger \( \, 3 \, \) först och dras av sedan från \( \, 64 \, \). Viktigt är att man efter första likhetstecknet inte begår felet att räkna \(64-8\) utan tar först \( \, 8 \, \) gånger \( \, 3 \, \).

Frågan som uppstår nu är: Vilken av de två lösningarna ovan är bättre? Just i det här exemplet spelar det ingen roll. Men generellt kommer vi att se att det i större sammanhang är bättre att lösa upp parenteser först, dvs att räkna deras innehåll så att man kan ta bort dem. Sedan kan man följa operatorernas prioritetsregler.


Exempel 3

Problem: Beräkna utan miniräknare:

\[24 - (8-4) - 36/6 + 5\cdot4\]

Lösning:

\[24\,-\,(8-4)\,-\,36/6\,+\,5\,\cdot\,4\;=\;24\,-\,4\,-\,6\,+\,20\;=\;20\,-\,6\,+\,20\;=\;14\,+\,20\;=\;34\]

Här har vi förkortat lösningen genom att sammanfatta beräkningen av parentesen, divisionen och multiplikationen i det första mellansteget.


Exempel 4

Problem: Beräkna utan räknare och kontrollera resultatet med räknaren:

\[\left({16-4 \over 3} + 7\right) \cdot 2 - 9/3 + 1 \]

Lösning:

\[ \displaystyle \left({16-4 \over 3} + 7\right)\,\cdot\,2\,-\,9/3\,+\,1 = \left({12 \over 3} + 7\right)\,\cdot\,2\,-\,3\,+\,1 \, = (4+7)\,\cdot\,2\,-\,3\,+\,1 = \]
\[ = \, 11\,\cdot\,2\,-\,3\,+\,1 = 22\,-\,3\,+\,1 = 19\,+\,1 = 20 \]

Här har vi i det första mellansteget börjat att beräkna parentesen och samtidigt utfört divisionen \(9/3\) för att skriva lite mindre. Upplösningen av parentesen fortsätter i det andra mellansteget medan divisionen är avslutad och resultatet tas med i de följande mellanstegen tills parentesen är upplöst och multiplikationen med \( \, 2 \, \) genomförd.


Osynliga parenteser

Exempel: \( \qquad\quad \) \( \displaystyle{2+6 \over 3+1} \)

Vanligt fel med digitalt verktyg: \( \quad 2 \, + \, 6 \, / \, 3 \, + \, 1 \, = \, 2 \, + \, 2 \, + \, 1 \, = \, 5 \)

Rätt med digitalt verktyg: \( \qquad\qquad \color{Red}(2 + 6\color{Red}) / \color{Red}(3 + 1\color{Red}) \, = \, 8 \, / 4 \, = \, 2 \)

Rätt med papper & penna: \( \displaystyle \qquad\quad\ {2+6 \over 3+1} = {(2+6) \over (3+1)} = {8 \over 4} = 2 \)

Det finns två symboler för division som gör samma sak: Divisionstecknet som t.ex. i \( \, \displaystyle {6/3} \, \) och bråkstrecket som i \( \, \displaystyle {6\over 3} \, \).

Skillnaden är att \( \, \displaystyle {6/3} \, \) är en operation, nämligen att dividera \( \, 6 \, \) med \( \, 3 \, \), medan \( \, \displaystyle {6\over 3} \, \) är ett tal i bråkform. Båda ger \( \, 2 \), operationens resultat och bråket förkortat.

Förklaringen för felet i exemplet ovan är "osynliga" parenteser: En av de dolda egenskaperna hos bråkstrecket är nämligen att det grupperar sin täljare \( \, 6+2 \, \) och nämnare \( \, 3+1 \, \) i osynliga parenteser, dvs i sådana som kan utelämnas. I det rätta svaret på papper (ovan) har vi synliggjort de "osynliga" parenteserna.

Och då ser man att det är parenteserna som måste beräknas först. Det är inte fel att i bråkformen även skriva de osynliga parenteserna kring täljaren \( \, 2 \, + \, 6 \, \) och nämnaren \(3+1\), men de är onödiga. Man brukar utelämna dem därför att bråkstrecket själv gör det redan tydligt att det är hela \( \, 2 \, + \, 6 \, \) som ska delas med hela \( \, 3 \, + \, 1\).

Vill man därmot skriva om divisionen med bråkstrecket till divisionen med divisionstecknet kan man göra det. Båda former är identiska:

\[ {2+6 \over 3+1} = (2+6) / (3+1) \, = \, 8 \, / 4 \, = \, 2 \]

I divisionsformen får man till skillnad från bråkformen inte utelämna parenteserna. Annars blir det ett annat uttryck och ett annat resultat:

\[2 \, + \, 6 \, / \, 3 \, + \, 1 \, = \, 2 \, + \, (6 \, / \, 3) \, + \, 1 \, = \, 2 \, + \, 2 \, + \, 1 \, = \, 5 \]

Detta pga prioritetsregeln "Division går före addition".

Slutsats:

Bråkstreck inkluderar parentes.


Parenteser och osynliga multiplikationstecken

Vad händer när parenteser är inblandade? Med parenteser kan man bryta prioritetsordningen och styra själv räknegången.

Om vi i det inledande exemplet sätter parenteser kan vi bryta prioritetsordningen och få \( \, 45 \, \):

\[(6+3)\cdot5=9\cdot5=45\]

Parentesen tvingar oss här att först räkna \(6+3\) och sedan fortsätta med gånger \( \, 5 \, \) så att man får \( \, 45 \, \). Uttrycket ovan är ett annat uttryck än det inledande exemplet. För att få det inledande exemplet måste parenteserna sättas så här:

\[6+(3\cdot5)=6+15=21\]

Man kan också säga att det i det inledande exemplet fanns "osynliga" parenteser. Det är sådana som kan utelämnas utan att någon ändring sker. Nu har vi gjort dem synliga. De gör exakt samma sak som prioritetsregeln "multiplikation går före addition". Därför utelämnar man dem vanligtvis och låter prioritetsregeln göra jobbet. Men det är inte heller fel att skriva parenteserna för tydlighetens skull.

Det finns inte bara osynliga parenteser utan även osynliga multiplikationstecken. De kan också utelämnas utan att någon ändring av uttryckets värde förekommer. I exemplet ovan kan man faktiskt utelämna multiplikationstecknet och skriva så här:

\[(6+3)\;5\]

Detta ger samma värde \( \, 9 \, \) gånger \( \, 5 \, = \, 45 \, \) som ovan.

Självklart kan man inte alltid utelämna multiplikationstecknet, t.ex. inte mellan två rena siffror eller tal som ska multipliceras. Läsligheten får ju inte lida. I uttrycket \( \, (6+3)\;5 \, \) är det parentesen som gör att multiplikationstecknet kan utelämnas.


Sammanfattning

När både parenteser och operatorer är inblandade i ett räkneuttryck använd följande turordningsregler:

1. Lös upp eventuella parenteser först, dvs räkna deras innehåll.

2. Sedan tar du multiplikationer och divisioner.

3. Sist additioner och subtraktioner.


Internetlänkar

https://www.mathsisfun.com/operation-order-pemdas.html

https://www.youtube.com/watch?v=lFxztfJ2bq4

http://matematikvideo.se/lektioner/prioriteringsreglerna/

http://www.matteguiden.se/rakneregler/

http://www.mathgoodies.com/lessons/vol7/order_operations.html





Copyright © 2021 TechPages AB. All Rights Reserved.