Skillnad mellan versioner av "3.5 Extremvärdesproblem"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(32 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[2.2 Genomsnittlig förändringshastighet|<-- Förra demoavsnitt]]}}
+
{{Not selected tab|[[3.4 Kurvkonstruktioner| <<&nbsp;&nbsp;Förra avsnitt]]}}
 
{{Selected tab|[[3.5 Extremvärdesproblem|Genomgång]]}}
 
{{Selected tab|[[3.5 Extremvärdesproblem|Genomgång]]}}
 
{{Not selected tab|[[3.5 Övningar till Extremvärdesproblem|Övningar]]}}
 
{{Not selected tab|[[3.5 Övningar till Extremvärdesproblem|Övningar]]}}
Rad 7: Rad 8:
 
|}
 
|}
  
 +
<!--
 +
[[Media: Lektion 27 Extremvardesproblem I Ruta.pdf|<strong><span style="color:blue">Lektion 27 Extremvärdesproblem I</span></strong>]]
  
[[Media: Lektion 34 Extremvardesproblem I Ruta.pdf|<strong><span style="color:blue">Lektion 34 Extremvärdesproblem I</span></strong>]]
+
[[Media: Lektion 28 Extremvardesproblem II Ruta.pdf|<strong><span style="color:blue">Lektion 28 Extremvärdesproblem II</span></strong>]]
 +
-->
  
[[Media: Lektion 35 Extremvardesproblem II Ruta.pdf|<strong><span style="color:blue">Lektion 35 Extremvärdesproblem II</span></strong>]]
 
__NOTOC__
 
 
<big>
 
<big>
 
<div class="ovnE"><small>
 
<div class="ovnE"><small>
Rad 37: Rad 39:
 
</tr>
 
</tr>
 
</table>
 
</table>
&nbsp;'''d)''' &nbsp;Bestäm definitionsmängden till funktionen <math> \, A(x) \, </math> och kontrollera om din lösning ligger inom dess definitionsmängd.
+
&nbsp;'''d)''' &nbsp;Bestäm definitionsmängden till funktionen <math> \, A(x) \, </math> och rita grafen till <math> \, A(x) </math>. Markera maximipunkten från '''b)''' i grafen.
 +
 
 +
:Kontrollera algebraiskt om maximipunkten ligger inom definitionsmängden.
 
</small></div>
 
</small></div>
  
Rad 72: Rad 76:
 
----
 
----
  
Bivillkoret sätter ''begränsningar'' (eng. ''constraints'') på punkten <math> (x,\,y)</math>:s rörelsefrihet.   
+
Bivillkoret sätter ''restriktioner'' (begränsningar, eng. ''constraints'') på punkten <math> (x,\,y)</math>:s rörelsefrihet.   
 
</div>
 
</div>
  
  
:I <b><span style="color:#931136">Exempel 1</span></b> är parabelns ekvation problemets bivillkor, därför att punkten <math> (x,\,y) </math> ''måste'' följa parabeln (problemets geometri), se figuren ovan.  
+
:I <b><span style="color:#931136">Exempel 1</span></b> är parabelns ekvation problemets bivillkor, därför att punkten <math> (x,\,y) </math> ''måste'' följa parabeln, se figuren ovan.  
  
 
:Vi använder bivillkoret för att skriva om rektangelns area från en funktion av två variabler <math> \, x \, </math> och <math> \, y \, </math> till en funktion av en variabel <math> \, x </math>.
 
:Vi använder bivillkoret för att skriva om rektangelns area från en funktion av två variabler <math> \, x \, </math> och <math> \, y \, </math> till en funktion av en variabel <math> \, x </math>.
Rad 100: Rad 104:
 
==== <b><span style="color:#931136">Målfunktion för ett extremvärdesproblem</span></b> ====
 
==== <b><span style="color:#931136">Målfunktion för ett extremvärdesproblem</span></b> ====
 
<div class="border-divblue">
 
<div class="border-divblue">
Ett extremvärdesproblems <strong><span style="color:red">målfunktion</span></strong> är alltid den funktion som ska maximeras eller minimeras.
+
Ett extremvärdesproblems <strong><span style="color:red">målfunktion</span></strong> är alltid den funktion av endast ''en'' variabel som ska
 +
 
 +
maximeras eller minimeras.
 
----
 
----
  
Rad 110: Rad 116:
  
  
:I <b><span style="color:#931136">Exempel 1</span></b> är <math> A\,(x) </math> problemets målfunktion, därför att det är rektangelns area som ska maximeras. I <math> A\,(x) </math> är parabelns ekvation redan "inbakad".
+
:I <b><span style="color:#931136">Exempel 1</span></b> är <math> A\,(x) </math> problemets målfunktion, därför att det är rektangelns area som ska maximeras.
 +
 
 +
I <math> A\,(x) </math> är parabelns ekvation redan "inbakad".
  
 
----
 
----
Rad 160: Rad 168:
 
:Vi sätter in <math> \, x_1 = 1,83 \, </math> i andraderivatan och använder [[3.2_Lokala_maxima_och_minima#Regler_om_max.2Fmin_med_andraderivatan|<strong><span style="color:blue">reglerna om max/min</span></strong>]]<span style="color:black">:</span>
 
:Vi sätter in <math> \, x_1 = 1,83 \, </math> i andraderivatan och använder [[3.2_Lokala_maxima_och_minima#Regler_om_max.2Fmin_med_andraderivatan|<strong><span style="color:blue">reglerna om max/min</span></strong>]]<span style="color:black">:</span>
  
<math> \qquad\quad A''(1,83) = -6 \cdot 1,83 \, < \, 0 \quad \Longrightarrow \quad A(x) \, </math> har ett lokalt maximum i <math> \, x = 1,83 \, </math>.
+
<math> \qquad\quad A''(1,83) = -6 \cdot 1,83 \, < \, 0 \quad \Longrightarrow \quad A(x) \, </math> har ett lokalt maximum i <math> \; \boxed{x \, = \, 1,83} \, </math>.
  
 
:För <math> \, x = 1,83 \, {\rm cm} \, </math> antar målfunktionen (rektangelns area) sitt maximum.
 
:För <math> \, x = 1,83 \, {\rm cm} \, </math> antar målfunktionen (rektangelns area) sitt maximum.
Rad 170: Rad 178:
 
:::<math> A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x </math>
 
:::<math> A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x </math>
  
:::<math> A(1,83) = -\,1,83^3 \, + \, 10 \cdot 1,83 \, = \, 12,17 </math>
+
:::<math> A(1,83) = -\,1,83\,^3 \, + \, 10 \cdot 1,83 \, = \, 12,17 </math>
  
 
:Rektangelns maximala area är <math> \, 12,17 \, </math>.  
 
:Rektangelns maximala area är <math> \, 12,17 \, </math>.  
 
----
 
----
 +
<table>
 +
<tr>
 +
<td>
 +
'''d)''' &nbsp; Målfunktionen <math> \, A\,(x) = \displaystyle -\,x^3 \, + \, 10\,x \, </math> har definitionsintervallet<span style="color:black">:
  
 
+
</span> <div style="border:1px solid black;
'''d)''' &nbsp; Målfunktionen <math> \, A\,(x) = \displaystyle -\,x^3 \, + \, 10\,x \, </math> har definitionsintervallet<span style="color:black">:</span> <div style="border:1px solid black;
+
 
display:inline-block !important;
 
display:inline-block !important;
margin-left: 50px !important;
+
margin-left: 150px !important;
 
padding:10px 10px 10px 10px;  
 
padding:10px 10px 10px 10px;  
 
-webkit-border-radius: 10px;"><strong><math> \, 0 \, \leq \, x \, \leq \, \sqrt{10} </math></strong></div>  
 
-webkit-border-radius: 10px;"><strong><math> \, 0 \, \leq \, x \, \leq \, \sqrt{10} </math></strong></div>  
Rad 184: Rad 195:
 
:Den vänstra ändan <math> \, 0 \, </math> är motiverad av att arean och därmed <math> \, x \, </math> inte kan vara negativ.
 
:Den vänstra ändan <math> \, 0 \, </math> är motiverad av att arean och därmed <math> \, x \, </math> inte kan vara negativ.
  
:Den högra ändan <math> \, \sqrt{10} \, </math> är parabelns positiva nollställe (se <b><span style="color:#931136">Exempel 1</span></b>:sfigur) dvs lösningen till ekvationen <math> \, \displaystyle -{x^2 \over 2} + 5 = 0 </math>.
+
:Den högra ändan <math> \, \sqrt{10} \, </math> är parabelns högra rand i [[3.5_Extremvärdesproblem#Exempel_1_Rektangel_i_parabel|<b><span style="color:blue">Exempel 1</span></b>]], dvs den positiva lös-
 +
 
 +
:ningen till ekvationen <math> \displaystyle -{x^2 \over 2} + 5 = 0 </math>. För <math> x > \sqrt{10} </math> blir <math> y < 0 </math>, vilket inte är tillåtet.
 +
 
 +
:Maximipunkten <math> \, x = 1,83 \, </math> ligger inom definitionsmängden<span style="color:black">:</span> <math> \, 0 \, < \, 1,83 \, < \, \sqrt{10} </math>.
 +
</td>
 +
  <td>&nbsp; [[Image: Ex_1_Malfunktion.jpg]]</td>
 +
</tr>
 +
</table>
  
:Maximipunkten <math> \, x = 1,83 \, </math> ligger inom definitionsmängden<span style="color:black">:</span> <math> \, 0 \, < \, 1,83 \, < \, \sqrt{10} </math>. 
 
 
</small></div>
 
</small></div>
  
Rad 194: Rad 212:
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td>En glasskiva har formen av en rätvinklig triangel med följande mått i cm:
+
   <td>En glasskiva har formen av en rätvinklig triangel med följande mått<span style="color:black">:</span>
  
En glasmästare ska skära ut en rektangulär glasplatta med maximal area ur skivan.
+
<math> \qquad\qquad\qquad\quad </math> Kortare kateten <math> \, = \, 20 \, </math> cm
  
'''a)''' &nbsp; Formulera problemets bivillkor.
+
<math> \qquad\qquad\qquad\quad </math> Längre kateten <math> \, = \, 30 \, </math> cm
  
'''b)''' &nbsp; Ställ upp problemets målfunktion. Ange dess definitionsmängd.
+
En <b><span style="color:red">rektangulär glasplatta med maximal area</span></b> ska skäras ut ur skivan.
  
'''c)''' &nbsp; Bestäm <math> \, x \, </math> så att glasplattans area <math> \, A(x) \, </math> maximeras.  
+
'''a)''' &nbsp; Formulera problemets bivillkor.
  
'''d)''' &nbsp; Beräkna glasplattans maximala area.
+
'''b)''' &nbsp; Ställ upp problemets målfunktion. Ange dess definitionsmängd.
 
</td>
 
</td>
 
   <td>&nbsp;&nbsp;&nbsp;[[Image: Ovn 3_2_10_40.jpg]]</td>
 
   <td>&nbsp;&nbsp;&nbsp;[[Image: Ovn 3_2_10_40.jpg]]</td>
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
'''c)''' &nbsp; Bestäm <math> \, x \, </math> så att glasplattans area <math> \, A(x) \, </math> maximeras.
 +
 +
'''d)''' &nbsp; Beräkna glasplattans maximala area.
 
</small></div>
 
</small></div>
  
Rad 301: Rad 322:
 
</table>
 
</table>
  
&nbsp;&nbsp;&nbsp;&nbsp; <math> \, x = 15 \, </math> som ligger inom målfunktionens definitionsmängd, sätts in i andraderivatan enligt [[Detta avsnitt ingår inte i demon.|<strong><span style="color:blue">reglerna om max/min</span></strong>]]<span style="color:black">:</span>
+
&nbsp;&nbsp;&nbsp;&nbsp; <math> \, x = 15 \, </math> som ligger inom målfunktionens definitionsmängd, sätts in i andraderivatan enligt [[3.2_Lokala_maxima_och_minima#Regler_om_max.2Fmin_med_andraderivatan|<strong><span style="color:blue">reglerna om max/min</span></strong>]]<span style="color:black">:</span>
  
&nbsp;&nbsp;&nbsp;&nbsp; <math> A''(15) = \displaystyle -\,{4 \over 3} \,<\, 0 \quad \Longrightarrow \quad A(x) \, </math> har ett lokalt maximum i <math> \, x = 15 \, </math>.
+
&nbsp;&nbsp;&nbsp;&nbsp; <math> A''(15) = \displaystyle -\,{4 \over 3} \,<\, 0 \quad \Longrightarrow \quad A(x) \, </math> har ett lokalt maximum i <math> \; \boxed{x \, = \, 15} \, </math>.
  
 
&nbsp;&nbsp;&nbsp;&nbsp; För <math> \, x = 15 \, {\rm cm} \, </math> antar målfunktionen ett maximum, dvs rektangelns area blir maximal.
 
&nbsp;&nbsp;&nbsp;&nbsp; För <math> \, x = 15 \, {\rm cm} \, </math> antar målfunktionen ett maximum, dvs rektangelns area blir maximal.
Rad 322: Rad 343:
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td>En cylinderformad konservburk ska produceras av en bit plåt.
+
   <td>En cylinderformad konservburk ska produceras av en bit plåt. Vi antar:
  
Vi antar att cylinderns begränsningsarea blir <math> \, 500 \, {\rm cm}^2 \, </math> efter spill.
+
Plåtens area <math> \, = \, </math> cylinderns begränsnings<b><span style="color:red">area</span></b> <math> \, {\color{Red} {= \, 500 \, {\rm cm}^2}} \, </math> efter spill.
  
Vilka mått på burken måste väljas så att volymen blir maximal?
+
Vilka mått på cylindern måste väljas så att <b><span style="color:red">volymen</span></b> blir <b><span style="color:red">maximal</span></b>&nbsp;?
  
  
Rad 378: Rad 399:
  
  
'''b)''' &nbsp; Cylinderns volym <math> \, V \, </math> är basytan <math> \times </math> höjden dvs<span style="color:black">:</span> <math> \qquad\qquad\quad V\,(r, \, {\color{Red} h}) \; = \; \pi \, r^2 \; \cdot \; {\color{Red} h} \, </math>
+
'''b)''' &nbsp; Cylinderns volym <math> \, V \, </math> är basytan <math> \times </math> höjden dvs<span style="color:black">:</span> <math> \qquad V\,(r, \, {\color{Red} h}) \; = \; \pi \, r^2 \; \cdot \; {\color{Red} h} \qquad </math> Funktion av två variabler<span style="color:black">:</span> <math> \, r \, </math> och <math> \, {\color{Red} h} \, </math>.
  
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; För att skriva om denna funktion av två variabler till en funktion av endast en variabel,
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; För att skriva om denna funktion till en funktion av endast en variabel, sätter vi in bivillkoret från '''a)''' i <math> \, V\,(r, \, {\color{Red} h}) \, </math> och eliminerar <math> \, {\color{Red} h} \, </math><span style="color:black">:</span>
 
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; sätter vi in bivillkoret från a) i <math> \, V\,(r, \, {\color{Red} h}) \, </math> och eliminerar <math> \, {\color{Red} h} \, </math>:
+
  
 
:::<math> V\,(r, \, {\color{Red} h}) \, = \, \pi \, r^2 \; \cdot \; {\color{Red} h} \, = \, \pi\,r^2\cdot \left( {\color{Red} {{250 \over \pi\,r}\,-\, r}} \right) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3  \, = \, 250 \cdot r  \, - \, \pi\,r^3 </math>
 
:::<math> V\,(r, \, {\color{Red} h}) \, = \, \pi \, r^2 \; \cdot \; {\color{Red} h} \, = \, \pi\,r^2\cdot \left( {\color{Red} {{250 \over \pi\,r}\,-\, r}} \right) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3  \, = \, 250 \cdot r  \, - \, \pi\,r^3 </math>
  
 
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Därmed blir målfunktionen: <div style="border:1px solid black;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Därmed är målfunktionen: <div style="border:1px solid black;
+
 
display:inline-block !important;
 
display:inline-block !important;
 
margin-left: 25px !important;
 
margin-left: 25px !important;
Rad 404: Rad 422:
  
 
::<math> V''(r) \, = \, -\,6\,\pi\,r </math>
 
::<math> V''(r) \, = \, -\,6\,\pi\,r </math>
 
  
  
Rad 430: Rad 447:
 
</tr>
 
</tr>
 
</table>
 
</table>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math> r_2 = -5,15 \, </math> förkastas, för radien kan inte bli negativ. <math> \, r = 5,15 \, > \, 0 \, </math> sätts in i andraderivatan enligt [[Detta avsnitt ingår inte i demon.|<strong><span style="color:blue">reglerna om max/min</span></strong>]]<span style="color:black">:</span>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math> r_2 = -5,15 \, </math> förkastas, för radien kan inte bli negativ. <math> \, r = 5,15 \, > \, 0 \, </math> sätts in i andraderivatan enligt [[3.2_Lokala_maxima_och_minima#Regler_om_max.2Fmin_med_andraderivatan|<strong><span style="color:blue">reglerna om max/min</span></strong>]]<span style="color:black">:</span>
  
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math> V''(5,15) = -6 \,\pi\cdot 5,15 \, < \, 0 \quad \Longrightarrow \quad V(r) \, </math> har ett lokalt maximum för <math> \, r = 5,15 </math>.
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math> V''(5,15) = -6 \,\pi\cdot 5,15 \, < \, 0 \quad \Longrightarrow \quad V(r) \, </math> har ett lokalt maximum för <math> \, r = 5,15 </math>.
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; För att få cylinderns höjd när volymen maximeras sätter vi in <math> \, r = 5,15 \, </math> i bivillkoret från a)<span style="color:black">:</span>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; För att få cylinderns höjd när volymen maximeras sätter vi in <math> \, r = 5,15 \, </math> i bivillkoret från '''a)'''<span style="color:black">:</span>
  
::::<math> h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \, = \, {250 \over \pi\cdot 5,15} \, - \, 5,15  \, = \, 10,30 </math>
+
:::::<math> h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \, = \, {250 \over \pi\cdot 5,15} \, - \, 5,15  \, = \, 10,30 </math>
  
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Cylinderns volym blir maximal för radien <math> \quad \boxed{r = 5,15 \; {\rm cm}} \quad </math> och höjden <math> \quad \boxed{h = 10,30 \; {\rm cm}} \quad </math>.
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Cylinderns volym blir maximal för radien <math> \quad \boxed{r = 5,15 \; {\rm cm}} \quad </math> och höjden <math> \quad \boxed{h = 10,30 \; {\rm cm}} \quad </math>.
Rad 443: Rad 460:
 
'''d)''' &nbsp; För att bestämma målfunktionens definitionsmängd tittar undersöker vi bivillkoret<span style="color:black">:</span> <math> \qquad h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r </math>
 
'''d)''' &nbsp; För att bestämma målfunktionens definitionsmängd tittar undersöker vi bivillkoret<span style="color:black">:</span> <math> \qquad h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r </math>
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Av detta framgår att <math> \; r \; </math> inte får vara <math> \, 0 \, </math><span style="color:black">:</span> <math> \; r \, \neq \, 0 \; </math>. Därför är <math> \, 0 \, </math> en undre gräns<span style="color:black">:</span> <math> \qquad r \, > \, 0 </math>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Av detta framgår att <math> \, r \, </math> inte får vara <math> \, 0 \, </math><span style="color:black">:</span> <math> \; r \, \neq \, 0 \; </math>. Därför är <math> \, 0 \, </math> en undre gräns för <math> \, r </math><span style="color:black">:</span> <math> \qquad r \, > \, 0 </math>
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; För att hitta en övre gräns (största möjliga värde) för <math> \; r \; </math> tittar vi på cylinderns begränsningsarea:
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; För att hitta en övre gräns (största möjliga värde) för <math> \; r \; </math> tittar vi på cylinderns begränsningsarea<span style="color:black">:</span>
  
 
:::::<math> \, A \, = \, 2\,\pi\,r\,h \, + 2\,\pi\,r^2 \, = \, 500 </math>
 
:::::<math> \, A \, = \, 2\,\pi\,r\,h \, + 2\,\pi\,r^2 \, = \, 500 </math>
Rad 451: Rad 468:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Pga begränsningsareans konstanta värde <math> \, 500 \, </math> blir cylinderns radie störst när höjden blir <math> \, 0 \, </math>.
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Pga begränsningsareans konstanta värde <math> \, 500 \, </math> blir cylinderns radie störst när höjden blir <math> \, 0 \, </math>.
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Därför får vi radiens störst möjliga värde om vi i formeln ovan väljer <math> \, h=0 \, </math>:
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Därför får vi radiens störst möjliga värde om vi i formeln ovan väljer <math> \, h=0 </math><span style="color:black">:</span>
  
 
:::::<math> \, h = 0 \qquad \Longrightarrow \qquad A \, = \, 2\,\pi \cdot \left(r\right)\,^2 \, = \, 500 \qquad \Longrightarrow \qquad r \, = \, \sqrt{500 \over 2\,\pi} \, = \, 8,92 </math>
 
:::::<math> \, h = 0 \qquad \Longrightarrow \qquad A \, = \, 2\,\pi \cdot \left(r\right)\,^2 \, = \, 500 \qquad \Longrightarrow \qquad r \, = \, \sqrt{500 \over 2\,\pi} \, = \, 8,92 </math>
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Därmed blir målfunktionens definitionsmängd:
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Därmed blir målfunktionens definitionsmängd<span style="color:black">:</span><math> \qquad\qquad </math><div style="border:1px solid black;
 
+
::::<div style="border:1px solid black;
+
 
display:inline-block !important;
 
display:inline-block !important;
 
margin-left: 25px !important;
 
margin-left: 25px !important;
Rad 472: Rad 487:
  
  
'''e)''' &nbsp; Resultaten från '''c)''' sätts in i målfunktionen för att få cylinderns största volym:
+
'''e)''' &nbsp; Resultaten från '''c)''' sätts in i målfunktionen för att få cylinderns största volym<span style="color:black">:</span>
  
 
::<math> V(5,15) \, = \, \pi \, \cdot 5,15^2 \, \cdot 10,30 \, = \, 858,23 </math>
 
::<math> V(5,15) \, = \, \pi \, \cdot 5,15^2 \, \cdot 10,30 \, = \, 858,23 </math>
Rad 481: Rad 496:
 
'''f)''' &nbsp; Följande samband råder mellan cylinderns radie <math> \; r = 5,15 \, {\rm cm} \; </math> och dess höjd <math> \; h = 10,30 \, {\rm cm}</math>
 
'''f)''' &nbsp; Följande samband råder mellan cylinderns radie <math> \; r = 5,15 \, {\rm cm} \; </math> och dess höjd <math> \; h = 10,30 \, {\rm cm}</math>
  
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; när volymen till en cylinder med en begränsningsarea på <math> \, 500 \, {\rm cm}^2 \, </math>, maximeras:
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; när volymen till en cylinder med en begränsningsarea på <math> \, 500 \, {\rm cm}^2 \, </math>, maximeras<span style="color:black">:</span>
  
 
::::<div style="border:1px solid black;
 
::::<div style="border:1px solid black;
Rad 491: Rad 506:
  
  
Återstår frågan som är föremål för undersökning i [[3.5_Övningar_till_Extremvärdesproblem#.C3.96vning_9|<strong><span style="color:blue">övning 9</span></strong>]], om samma samband även råder <strong><span style="color:red">generellt</span></strong> mellan radien <math> \; r \; </math> och höjden <math> \; h \; </math> för alla konservburkar med vilken begränsningsarea som helst och maximal volym, nämligen:
+
Återstår frågan som är föremål för undersökning i [[3.5_Övningar_till_Extremvärdesproblem#.C3.96vning_9|<strong><span style="color:blue">övning 9</span></strong>]], om samma samband även råder <strong><span style="color:red">generellt</span></strong> mellan radien <math> \; r \; </math> och höjden <math> \; h \; </math> för alla konservburkar med vilken begränsningsarea som helst och maximal volym, nämligen<span style="color:black">:</span>
  
 
::<div style="border:1px solid black;
 
::<div style="border:1px solid black;

Nuvarande version från 13 juni 2020 kl. 16.57

        <<  Förra avsnitt          Genomgång          Övningar      


Exempel 1 Rektangel i parabel

En rektangel är inbunden i en parabel vars ekvation är given:
\[ y \, = \, -\,{\, x^2 \over 2} \, + \, 5 \qquad {\rm med} \qquad y \, \geq \, 0 \]

Punkten \( \, (x,\,y) \, \) rör sig på parabeln, se figuren. Placera den så

att rektangelns area \( \, A \, \) blir maximal.


a)   Ställ upp rektangelns area som en funktion av \( \, x \, \) dvs \( \, A(x) \, \).

b)   Bestäm \( \, x \, \) så att \( \, A(x) \, \) blir maximal.

c)   Beräkna rektangelns maximala area.

       35 Rektangel i parabel.jpg

 d)  Bestäm definitionsmängden till funktionen \( \, A(x) \, \) och rita grafen till \( \, A(x) \). Markera maximipunkten från b) i grafen.

Kontrollera algebraiskt om maximipunkten ligger inom definitionsmängden.


Lösning:

a)   Rektangelns area kan skrivas som \( \quad A\,(x, \, {\color{Red} y}) \; = \; 2 \, \cdot x \, \cdot \, {\color{Red} y} \)

Men \( \, A\,(x, \, {\color{Red} y}) \, \) är en funktion av två variabler som vi inte kan hantera.
Därför måste \( A\,(x, \, {\color{Red} y}) \, \) skrivas om till en funktion \( \, A\,(x) \, \) av endast en variabel, nämligen \( \, x \).
Detta gör vi genom att eliminera \( \, {\color{Red} y} \, \):   Vi utnyttjar sambandet mellan \( \, x \, \) och \( \, {\color{Red} y} \, \) som är givet av parabelns ekvation.
Rektangelns "rörliga" hörn \( \, (x,\,{\color{Red} y}) \, \) måste alltid ligga på parabeln. Därför måste \( \, x \, \) och \( \, y \, \) uppfylla parabelns ekvation:
\( \displaystyle {\color{Red} y} \, = \, -\,{\, x^2 \over 2} \, + \, 5 \)
\( \qquad \) Detta samband kallas för problemets bivillkor.

Bivillkor för ett extremvärdesproblem

Ett extremvärdesproblems bivillkor är ett samband som bestäms av problemets givna geometriska

eller andra föreskrivna egenskaper.


Bivillkoret sätter restriktioner (begränsningar, eng. constraints) på punkten \( (x,\,y)\):s rörelsefrihet.


I Exempel 1 är parabelns ekvation problemets bivillkor, därför att punkten \( (x,\,y) \) måste följa parabeln, se figuren ovan.
Vi använder bivillkoret för att skriva om rektangelns area från en funktion av två variabler \( \, x \, \) och \( \, y \, \) till en funktion av en variabel \( \, x \).
Därför sätter vi in parabelns ekvation \( \, \displaystyle {\color{Red} y} = -\,{\, x^2 \over 2} + 5 \, \) i rektangelns area \( \, A\,(x, \, {\color{Red} y}) = 2\cdot x \cdot {\color{Red} y} \, \) för att eliminera \( \, {\color{Red} y} \,\):
\[ A\,(x, \, {\color{Red} y}) \, = \, 2 \cdot x \cdot {\color{Red} y} \, = \, 2 \cdot x \cdot \left({\color{Red} {-\,{\, x^2 \over 2} \, + \, 5}}\right) \, = \, -\,x^3 \, + \, 10\,x \]
På så sätt får vi en funktion för rektangelns area som endast beror av \( \, x \):
\( A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x \)
\( \qquad \) Denna funktion kallas för problemets målfunktion


Målfunktion för ett extremvärdesproblem

Ett extremvärdesproblems målfunktion är alltid den funktion av endast en variabel som ska

maximeras eller minimeras.


Extremvärdesproblem består i regel av ett bivillkor och en målfunktion.


Bivillkoret används för att reducera målfunktionen till en funktion av endast en variabel.


I Exempel 1 är \( A\,(x) \) problemets målfunktion, därför att det är rektangelns area som ska maximeras.

I \( A\,(x) \) är parabelns ekvation redan "inbakad".



b)   För att hitta målfunktionens lokala maximum deriverar vi \( \, A(x) \, \) och bestämmer derivatans nollställen:

\[ A(x) \, = \, -\,x^3 \, + \, 10\,x \]
\[ A'(x) \, = \, -\,3\,x^2 \, + \, 10 \]
\[ A''(x) \, = \, -\,6\,x \]




\( \qquad \) Derivatans nollställen:






\( \qquad \) \(\begin{array}{rcrcl} A'(x) & = & -3\,x^2 \, + \, 10 & = & 0 \\ & & 10 & = & 3\,x^2 \\ & & {10 \over 3} & = & x^2 \\ & & x_{1, 2} & = & \sqrt{10 \over 3} \\ & & x_1 & = & 1,83 \\ & & x_2 & = & -1,83 \end{array}\)

\( \quad\; x_2 = -1,83 \, \) förkastas därför att arean och därmed \( \, x \, \) inte kan vara negativ, se även d).

Vi sätter in \( \, x_1 = 1,83 \, \) i andraderivatan och använder reglerna om max/min:

\( \qquad\quad A''(1,83) = -6 \cdot 1,83 \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \; \boxed{x \, = \, 1,83} \, \).

För \( \, x = 1,83 \, {\rm cm} \, \) antar målfunktionen (rektangelns area) sitt maximum.


c)   För att bestämma rektangelns maximala area sätter vi in \( \, x = 1,83 \, \) i målfunktionen \( \, A(x) \):

\[ A\,(x) \, = \, \displaystyle -\,x^3 \, + \, 10\,x \]
\[ A(1,83) = -\,1,83\,^3 \, + \, 10 \cdot 1,83 \, = \, 12,17 \]
Rektangelns maximala area är \( \, 12,17 \, \).

d)   Målfunktionen \( \, A\,(x) = \displaystyle -\,x^3 \, + \, 10\,x \, \) har definitionsintervallet:

\( \, 0 \, \leq \, x \, \leq \, \sqrt{10} \)
Den vänstra ändan \( \, 0 \, \) är motiverad av att arean och därmed \( \, x \, \) inte kan vara negativ.
Den högra ändan \( \, \sqrt{10} \, \) är parabelns högra rand i Exempel 1, dvs den positiva lös-
ningen till ekvationen \( \displaystyle -{x^2 \over 2} + 5 = 0 \). För \( x > \sqrt{10} \) blir \( y < 0 \), vilket inte är tillåtet.
Maximipunkten \( \, x = 1,83 \, \) ligger inom definitionsmängden: \( \, 0 \, < \, 1,83 \, < \, \sqrt{10} \).
  Ex 1 Malfunktion.jpg


Exempel 2 Glasskiva (rektangel i triangel)

En glasskiva har formen av en rätvinklig triangel med följande mått:

\( \qquad\qquad\qquad\quad \) Kortare kateten \( \, = \, 20 \, \) cm

\( \qquad\qquad\qquad\quad \) Längre kateten \( \, = \, 30 \, \) cm

En rektangulär glasplatta med maximal area ska skäras ut ur skivan.

a)   Formulera problemets bivillkor.

b)   Ställ upp problemets målfunktion. Ange dess definitionsmängd.

   Ovn 3 2 10 40.jpg

c)   Bestäm \( \, x \, \) så att glasplattans area \( \, A(x) \, \) maximeras.

d)   Beräkna glasplattans maximala area.


Lösning:

a)   Vi inför beteckningen \( \; {\color{Red} y} \; \) för glasplattans andra sida, så att rektangelns area kan skrivas som \( \; A\,(x, {\color{Red} y}) \; = \; x \; \cdot \; {\color{Red} y} \)

För att skriva om funktionen ovan till en funktion \( \, A\,(x) \, \) av endast en variabel, nämligen \( \, x \, \),

måste \( \, {\color{Red} y} \, \) uttryckas med \( \, x \, \), så att \( \, {\color{Red} y} \, \) kan elimineras.

Sambandet mellan \( \, x \, \) och \( \, {\color{Red} y} \, \) bestäms av rektangelns "rörliga" hörn som är bundet till triangelns hypotenusa.

Vi inför ett koordinatsystem och sätter glasskivan i det, se bilden:

Triangelns hypotenusa blir då en del av en rät linje.

Punkten \( \, (x, y) \, \) rör sig på denna räta linje vars ekvation är:

\[ {\color{Red} y} \, = \, k\,x \, + \, m \]

Lutningen \( \, k \, = \, \displaystyle {\Delta y \over \Delta x} \, = \, - \, {20 \over 30} \, = \, - \, {2 \over 3} \)

Skärningspunkten med \(\,y\)-axeln: \( \quad m \, = \, 20 \)

Den räta linjens ekvation blir då problemets bivillkor:

\( \displaystyle {\color{Red} y} \, = \, - \, {2 \over 3}\,x \, + \, 20 \)
       Ovn 3 2 10a.jpg



b)   Det ovan formulerade bivillkoret för glasskivan sätts in i \( \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; \) för att eliminera \( \, {\color{Red} y} \,\)

     och ställa upp ett uttryck för arean som endast beror av \( \, x \):

\[ A\,(x, \, {\color{Red} y}) \, = \, x \cdot {\color{Red} y} \, = \, x \cdot \left(-\,{2 \over 3}\,x \, + \, 20\right) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
     Målfunktionen är:
\( A\,(x) \, = \, \displaystyle -\,{2 \over 3}\,x^2 \, + \, 20\,x \)
       med definitionsmängden: \( \quad 0 \, \leq \, x \, \leq \, 30 \,\).


c)   För att hitta målfunktionens lokala maximum deriverar vi \( \, A(x) \, \) och bestämmer derivatans nollställen:

\[ A(x) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
\[ A'(x) \, = \, -\,{4 \over 3}\,x \, + \, 20 \]
\[ A''(x) \, = \, -\,{4 \over 3} \]
\( \qquad \) Derivatans nollställen:





\( \qquad \) \(\begin{array}{rcrcl} A'(x) & = & -{4 \over 3}\,x + 20 & = & 0 \\ & & 20 & = & {4 \over 3}\,x \\ & & {20 \, \cdot \, 3 \over 4} & = & x \\ & & x & = & 15 \end{array}\)


     \( \, x = 15 \, \) som ligger inom målfunktionens definitionsmängd, sätts in i andraderivatan enligt reglerna om max/min:

     \( A''(15) = \displaystyle -\,{4 \over 3} \,<\, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \; \boxed{x \, = \, 15} \, \).

     För \( \, x = 15 \, {\rm cm} \, \) antar målfunktionen ett maximum, dvs rektangelns area blir maximal.


d)   Eftersom rektangeln får sin största area för \( \, x = 15 \, \) sätter vi in \( \, x = 15 \, \) i målfunktionen för att få största arean:

\[ A\,(x) \, = \, \displaystyle -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
\[ A(15) = -\,{2 \over 3} \cdot 15^2 + 20 \cdot 15 = 150 \]

     Glasplattans största area blir \( \, 150 \, {\rm cm}^2 \, \).


Exempel 3 Konservburk

En cylinderformad konservburk ska produceras av en bit plåt. Vi antar:

Plåtens area \( \, = \, \) cylinderns begränsningsarea \( \, {\color{Red} {= \, 500 \, {\rm cm}^2}} \, \) efter spill.

Vilka mått på cylindern måste väljas så att volymen blir maximal ?


a)   Formulera problemets bivillkor.

b)   Ställ upp problemets målfunktion.

c)   Bestäm cylinderns radie och höjd så att burkens volym

blir maximal.
     Konservburk 40a.jpg

 d)   Ange målfunktionens definitionsmängd. Rita graferna till bivillkoret och målfunktionen. Tolka graferna.

 e)   Beräkna konservburkens maximala volym.

 f)    Vilket samband råder mellan cylinderns radie \( \, r \, \) och dess höjd \( \, h \, \) när volymen maximeras?


Lösning:

a)   Begränsningsarean \( \, A \, = \, 2\,\pi\,r\,h \, + 2\,\pi\,r^2 \, = \, 500 \)
\[\begin{array}{rcl} 2\,\pi\,r\,h \, + 2\,\pi\,r^2 & = & 500 \\ 2\,\pi\,r\,h & = & 500 \, - 2\,\pi\,r^2 \\ h & = & {500 - 2\,\pi\,r^2 \over 2\,\pi\,r} \\ h & = & {500 \over 2\,\pi\,r} \, - \, r \, = \, {250 \over \pi\,r} \, - \, r \end{array}\]
       Därmed är bivillkoret:
\( h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \)
      Zylinder01.gif




b)   Cylinderns volym \( \, V \, \) är basytan \( \times \) höjden dvs: \( \qquad V\,(r, \, {\color{Red} h}) \; = \; \pi \, r^2 \; \cdot \; {\color{Red} h} \qquad \) Funktion av två variabler: \( \, r \, \) och \( \, {\color{Red} h} \, \).


       För att skriva om denna funktion till en funktion av endast en variabel, sätter vi in bivillkoret från a) i \( \, V\,(r, \, {\color{Red} h}) \, \) och eliminerar \( \, {\color{Red} h} \, \):

\[ V\,(r, \, {\color{Red} h}) \, = \, \pi \, r^2 \; \cdot \; {\color{Red} h} \, = \, \pi\,r^2\cdot \left( {\color{Red} {{250 \over \pi\,r}\,-\, r}} \right) \, = \, {250 \cdot \pi\,r^2 \over \pi\,r} \, - \, \pi\,r^3 \, = \, 250 \cdot r \, - \, \pi\,r^3 \]
       Därmed blir målfunktionen:
\( V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \)


c)   Målfunktionen maximeras:

\[ V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \]
\[ V'(r) \, = \, 250 \, - \, 3\,\pi\,r^2 \]
\[ V''(r) \, = \, -\,6\,\pi\,r \]


\( \qquad \) Derivatans nollställen:





\( \qquad \) \(\begin{array}{rcrcl} V'(r) & = & 250 \, - \, 3\,\pi\,r^2 & = & 0 \\ & & 250 & = & 3\,\pi\,r^2 \\ & & {250 \over 3\,\pi} & = & r^2 \\ & & r_{1, 2} & = & \pm\,\sqrt{250 \over 3\,\pi} \\ & & r & = & 5,15 \end{array}\)

       \( r_2 = -5,15 \, \) förkastas, för radien kan inte bli negativ. \( \, r = 5,15 \, > \, 0 \, \) sätts in i andraderivatan enligt reglerna om max/min:

       \( V''(5,15) = -6 \,\pi\cdot 5,15 \, < \, 0 \quad \Longrightarrow \quad V(r) \, \) har ett lokalt maximum för \( \, r = 5,15 \).

       För att få cylinderns höjd när volymen maximeras sätter vi in \( \, r = 5,15 \, \) i bivillkoret från a):

\[ h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \, = \, {250 \over \pi\cdot 5,15} \, - \, 5,15 \, = \, 10,30 \]

       Cylinderns volym blir maximal för radien \( \quad \boxed{r = 5,15 \; {\rm cm}} \quad \) och höjden \( \quad \boxed{h = 10,30 \; {\rm cm}} \quad \).


d)   För att bestämma målfunktionens definitionsmängd tittar undersöker vi bivillkoret: \( \qquad h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \)

       Av detta framgår att \( \, r \, \) inte får vara \( \, 0 \, \): \( \; r \, \neq \, 0 \; \). Därför är \( \, 0 \, \) en undre gräns för \( \, r \): \( \qquad r \, > \, 0 \)

       För att hitta en övre gräns (största möjliga värde) för \( \; r \; \) tittar vi på cylinderns begränsningsarea:

\[ \, A \, = \, 2\,\pi\,r\,h \, + 2\,\pi\,r^2 \, = \, 500 \]

       Pga begränsningsareans konstanta värde \( \, 500 \, \) blir cylinderns radie störst när höjden blir \( \, 0 \, \).

       Därför får vi radiens störst möjliga värde om vi i formeln ovan väljer \( \, h=0 \):

\[ \, h = 0 \qquad \Longrightarrow \qquad A \, = \, 2\,\pi \cdot \left(r\right)\,^2 \, = \, 500 \qquad \Longrightarrow \qquad r \, = \, \sqrt{500 \over 2\,\pi} \, = \, 8,92 \]
       Därmed blir målfunktionens definitionsmängd:\( \qquad\qquad \)
\( 0 \; < \; r \; \leq \; 8,92 \)

      Grafen till vänster visar bivillkoret \( h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \) och till höger målfunktionen \( V(r) \, = \, 250 \, r \, - \, \pi\,r^3 \), båda med definitionsmängden ovan.

Konservburk Grafer.jpg

      Målfunktionens graf till höger bekräftar det algebraiska resultatet från c), nämligen att volymen blir maximal för \( \, r = 5,15 \).

      Bivillkorets graf till vänster bekräftar att för \( \, r = 5,15 \, \) höjden blir \( \, \approx \, 10 \) och dessutom att \( \, r \, \) inte kan bli större än \( \, 8,92 \).


e)   Resultaten från c) sätts in i målfunktionen för att få cylinderns största volym:

\[ V(5,15) \, = \, \pi \, \cdot 5,15^2 \, \cdot 10,30 \, = \, 858,23 \]

       Konservburkens maximala volym blir \( \; 858,23 \, {\rm cm}^3 \; \).


f)   Följande samband råder mellan cylinderns radie \( \; r = 5,15 \, {\rm cm} \; \) och dess höjd \( \; h = 10,30 \, {\rm cm}\)

      när volymen till en cylinder med en begränsningsarea på \( \, 500 \, {\rm cm}^2 \, \), maximeras:

\( 2 \; r \; = \; h \)


Återstår frågan som är föremål för undersökning i övning 9, om samma samband även råder generellt mellan radien \( \; r \; \) och höjden \( \; h \; \) för alla konservburkar med vilken begränsningsarea som helst och maximal volym, nämligen:

Diametern \( \; = \; \) Höjden

En annan intressant frågeställning är:

Råder även sambandet ovan om man utgår från en konservburk med fast given volym vars materialåtgång ska minimeras?

En närmare undersökning liknande lösningen till Exempel 3 kommer att visa att detta är fallet.

Dvs sambandet ovan är alltid optimalt ur ekonomisk synpunkt.


Ett ekonomiskt exempel

Se övning 7.




Copyright © 2011-2016 Math Online Sweden AB. All Rights Reserved.