Skillnad mellan versioner av "2.3 Gränsvärde"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(17 mellanliggande versioner av samma användare visas inte)
Rad 11: Rad 11:
  
  
[[Media: Lektion_14_Gransvarde_Rutac.pdf|<b><span style="color:blue">Lektion 14 Gränsvärde</span></b>]]
+
<!-- [[Media: Lektion_14_Gransvarde_Rutac.pdf|<b><span style="color:blue">Lektion 14 Gränsvärde</span></b>]] -->
  
  
 
<big>
 
<big>
 
Vårt mål i detta kapitel är att förstå begreppet <b><span style="color:red">derivata</span></b>. Men eftersom derivata är ett gränsvärde, måste vi först behandla begreppet gränsvärde.
 
Vårt mål i detta kapitel är att förstå begreppet <b><span style="color:red">derivata</span></b>. Men eftersom derivata är ett gränsvärde, måste vi först behandla begreppet gränsvärde.
 +
 +
Limesbegreppet är centralt inom <b><span style="color:red">Analys</span></b><math>-</math> den gren av matematiken som [https://sv.wikipedia.org/wiki/Isaac_Newton <b><span style="color:blue">Newton</span></b>] och [https://sv.wikipedia.org/wiki/Gottfried_Wilhelm_von_Leibniz <b><span style="color:blue">Leibniz</span></b>] på 1700-talet la grunden till, även kallad <b><span style="color:red">Differential- och Integralkalkyl</span></b>, på engelska <b><span style="color:red">Calculus</span></b>. Det är därför vi numera använder begreppet "analytiskt" istället för "algebraiskt".
  
  
Rad 26: Rad 28:
 
<math> \qquad\quad\;\; </math> <div class="smallBoxVariant"><math> v(t) = 80\,(1 - 0,88\,^t) </math></div>
 
<math> \qquad\quad\;\; </math> <div class="smallBoxVariant"><math> v(t) = 80\,(1 - 0,88\,^t) </math></div>
  
där <math> \, t = \, </math> tiden i sek. Finns det en maximal hastighet
+
där <math> \, t = \, </math> tiden i sek. I praktiken vet vi att det finns en
  
<math> \, v_{max} \, </math> som hopparen inte kan överskrida?
+
maximal hastighet <math> \, v_{max} \, </math> som hopparen inte kan över-
  
Om ja, bestäm den. Tips: Rita grafen till <math> v(t) </math>.</small>
+
skrida. Bestäm denna gränshastighet matematiskt.</small>
 
</div>
 
</div>
 
</td>
 
</td>
Rad 46: Rad 48:
 
<i>När ett föremål är i vila eller rör sig med konstant hastighet är summan av alla krafter <math> \, = 0 \, </math> (och omvänt).</i>
 
<i>När ett föremål är i vila eller rör sig med konstant hastighet är summan av alla krafter <math> \, = 0 \, </math> (och omvänt).</i>
  
Därav följer<span style="color:black">:</span> <math> \qquad </math> Luftmotstånd <math> \, \approx \, </math> gravitation <math> \quad </math> dvs <math> \quad </math> rörelsen är ett fritt fall med luftmotstånd.
+
Därav följer<span style="color:black">:</span> <math> \qquad </math> Luftmotstånd <math> \, \approx \, </math> gravitation <math> \quad </math> dvs <math> \quad </math> rörelsen är ett <b><span style="color:red">fritt fall med luftmotstånd</span></b>.
  
 
<b>Matematisk beskrivning:</b>
 
<b>Matematisk beskrivning:</b>
  
<div class="border-divblue"><b><span style="color:red">Gränsvärdet</span></b>&nbsp; för <math> \, 80\,(1 - 0,88\,^t) \, </math>,&nbsp; då <math> \,t \, </math> går mot <math> \, \infty \; </math>,&nbsp; <b><span style="color:red">är <math> \, 80</math></span></b>.<br>Man skriver<span style="color:black">:</span> <math> \quad </math> <div class="smallBoxVariant"><math> \displaystyle {\color{Red} {\lim_{t \to \infty}}}\,{\left(80\,(1 - 0,88\,^t)\right)} \color{Red} { \; = \; 80} </math></div> <math> \quad </math> och läser<span style="color:black">:</span>  
+
<div class="border-divblue"><small><b><span style="color:red">Gränsvärdet</span></b>&nbsp; för <math> \, 80\,(1 - 0,88\,^t) \, </math>,&nbsp; då <math> \,t \, </math> går mot <math> \, \infty \; </math>,&nbsp; <b><span style="color:red">är <math> \, 80</math></span></b>.<br>Man skriver<span style="color:black">:</span> <math> \quad </math> <div class="smallBoxVariant"><math> \displaystyle {\color{Red} {\lim_{t \to \infty}}}\,{\left(80\,(1 - 0,88\,^t)\right)} \color{Red} { \; = \; 80} </math></div> <math> \quad </math> och läser<span style="color:black">:</span>  
  
 
<math> \qquad\;\; </math> Limes av <math> \, 80\,(1 - 0,88\,^t) \, </math>, då <math> t </math> går mot <math> \infty \, </math>, är <math> 80 </math>.
 
<math> \qquad\;\; </math> Limes av <math> \, 80\,(1 - 0,88\,^t) \, </math>, då <math> t </math> går mot <math> \infty \, </math>, är <math> 80 </math>.
  
 
<math> \quad\;\;\, {\color{Red} {\lim}} \, </math> står för det latinska ordet <math> \, {\color{Red} {\rm limes}} \, </math> som betyder gräns.
 
<math> \quad\;\;\, {\color{Red} {\lim}} \, </math> står för det latinska ordet <math> \, {\color{Red} {\rm limes}} \, </math> som betyder gräns.
</div>
+
</small></div>
  
<b>Limes kan beräknas:</b>
+
<b>Limes kan <span style="color:red">beräknas</span> utan graf:</b>
  
 
<math> v_{max} \, = \, \displaystyle \lim_{t \to \infty}\,{(80\,(1 - 0,88\,^t))} \, = \, \lim_{t \to \infty}\,{(80 - 80\cdot0,88\,^t)} \, = \, \lim_{t \to \infty}\,{80} - \lim_{t \to \infty}\,{(80\cdot0,88\,^t)} \, = \, 80 \, - \, 0 \, = \, \color{Red} {80} \, </math>,
 
<math> v_{max} \, = \, \displaystyle \lim_{t \to \infty}\,{(80\,(1 - 0,88\,^t))} \, = \, \lim_{t \to \infty}\,{(80 - 80\cdot0,88\,^t)} \, = \, \lim_{t \to \infty}\,{80} - \lim_{t \to \infty}\,{(80\cdot0,88\,^t)} \, = \, 80 \, - \, 0 \, = \, \color{Red} {80} \, </math>,
  
eftersom <math> \qquad\;\; \displaystyle \lim_{t \to \infty}\,{(80\cdot0,88\,^t)} \, = \, \lim_{t \to \infty}\,{80} \cdot \lim_{t \to \infty}\,{(0,88\,^t)} \, = \, 80 \cdot 0 \, = \, 0 \quad </math> pga <math> \quad 0,88 \, < \, 1 \; </math>.
+
eftersom <math> \qquad \displaystyle \lim_{t \to \infty}\,{(80\cdot0,88\,^t)} \, = \, \lim_{t \to \infty}\,{80} \cdot \lim_{t \to \infty}\,{(0,88\,^t)} \, = \, 80 \cdot 0 \, = \, 0 \quad </math> pga <math> \quad 0,88 \, < \, 1 \; </math>.
  
 +
<b>Experiment:</b> &nbsp;Ta upp din miniräknare och slå in<span style="color:black">:</span> <math> \; 0,88\,^{10}, \quad 0,88\,^{100}, \quad 0,88\,^{1000}, \ldots \,  </math>. Vad händer?
  
=== <b><span style="color:#931136">Gränsvärde för en funktion</span></b> ===
+
<math> \qquad\qquad\quad </math> Är detta ett bevis för <math> \displaystyle \lim_{t \to \infty}\,{(0,88\,^t)} \, = \, 0 \, </math>? Nej, men:
Vi förutsätter att alla funktioner <math> \, y = f(x) \, </math> i detta avsnitt är [[1.5_Kontinuerliga_och_diskreta_funktioner|<b><span style="color:blue">kontinuerliga</span></b>]] för alla <math> \, x \, </math> i det betraktade området.
+
  
<div class="exempel">
+
<b>Generellt:</b> <math> \quad \displaystyle \lim_{t \to \infty}\,{(a\,^t)} \, = \, 0 \, </math>, om <math> \, a \, < \, 1 \,</math>. Kan bevisas.
==== <b><span style="color:#931136">Exempel</span></b> ====
+
 
+
Funktionen <math> y = f(x) = \displaystyle {10 \over x\,-\,2} </math> är given<span style="color:black">:</span> <math> \qquad\qquad </math> <b><span style="color:red">Vad händer med <math> \, y \, </math> när <math> \; x \to \infty \; </math>?</span></b>
+
<table>
+
<tr>
+
  <td><math> \quad </math>[[Image: Ex 1 Gransvarde.jpg]]</td>
+
<td><math> \quad </math></td>
+
  <td><div class="border-divblue"><b><span style="color:red">Gränsvärdet</span></b>&nbsp; för <math> \, \displaystyle {10 \over x\,-\,2} \, </math>,&nbsp; då <math> \,x \, </math> går mot <math> \, \infty \; </math>,&nbsp;  <b><span style="color:red">är <math> \, 0</math></span></b> &nbsp;<span style="color:black">:</span>
+
 
+
 
+
<math> \quad\qquad\qquad\qquad\, \displaystyle {\color{Red} {\lim_{x \to \infty}}}\,{10 \over x\,-\,2} {\color{Red} { \; = \; 0}} </math>
+
</div>
+
 
+
 
+
'''Grafiskt''':&nbsp; Kurvan närmar sig <math> \, x </math>-axeln när <math> \, x \, </math> växer, dvs <math> \, y\, </math> blir allt mindre ju större <math> \, x \, </math> blir.
+
 
+
Men kurvan skär aldrig <math> \, x </math>-axeln. Funktionen går mot <math> \, 0\, </math> utan att nå <math> \, 0 </math>.
+
</td>
+
</tr>
+
</table>
+
'''Analytiskt''':&nbsp; Ekvationen <math> \, \displaystyle {10 \over x\,-\,2} \, = \, 0 \, </math> saknar lösning, därför att täljaren <math> \, 10\, </math> är en konstant som aldrig kan bli <math> \, 0 </math>. Så kan inte heller hela uttrycket i vänsterled bli <math> \, 0 \, </math> oavsett <math> \, x </math>. Nämnaren växer däremot obegränsat när <math> \, x \, </math> växer. Därför går hela uttrycket i vänsterled mot <math> \, 0 </math>.
+
 
+
Man säger<span style="color:black">:</span> <math> \; \displaystyle {10 \over x\,-\,2} \; {\rm går\;mot} \, 0 \; {\rm när} \; x \; {\rm går\;mot} \, \infty \, </math>, kort<span style="color:black">:</span> <math> \;\; \displaystyle {10 \over x\,-\,2} \to 0 \quad {\rm när} \quad x \to \infty \;\; </math>, bättre uttryckt<span style="color:black">:</span> <math> \, \boxed{ \displaystyle \lim_{x \to \infty}\,{10 \over x\,-\,2} \, = \, 0} \, </math>.
+
 
+
<b><span style="color:red">Vad händer med <math> \, y \, </math> när <math> \; x \to - \infty \; </math>?</span></b>
+
 
+
Något liknande visas när <math> \, x \, </math> går mot negativa värden, dvs när <math> x \to \, {\color{Red} {- \infty}} </math>: &nbsp; <math> \,y\, </math> mot <math> \,0\, </math> bara att <math> \, y\, </math> nu närmar sig <math> \, 0 \, </math> nedifrån, kort<span style="color:black">:</span> <math> \;\; y \to 0 \quad {\rm när} \quad x \to {\color{Red} {- \infty}} \; </math>.
+
</div>
+
 
+
 
+
"Paradoxen" att funktionen allt mer närmar sig <math> \, 0 \, </math> utan att någonsin bli <math> \, 0 </math>, löses upp och kan därmed hanteras analytiskt med hjälp av <b><span style="color:red">limes</span></b> som generellt beskriver fenomenet att närma sig ett värde allt mer utan att nå det någonsin.
+
 
+
Limesbegreppet är centralt inom <b><span style="color:red">Analys</span></b><math>-</math> den gren av matematiken som [https://sv.wikipedia.org/wiki/Isaac_Newton <b><span style="color:blue">Newton</span></b>] och [https://sv.wikipedia.org/wiki/Gottfried_Wilhelm_von_Leibniz <b><span style="color:blue">Leibniz</span></b>] på 1700-talet la grunden till, även kallad <b><span style="color:red">Differential- och Integralkalkyl</span></b>, på engelska <b><span style="color:red">Calculus</span></b>. Det är därför vi numera använder begreppet "analytiskt" istället för "algebraiskt".
+
 
+
I detta kapitel kommer vi att använda limes för att definiera derivatan analytiskt som ett gränsvärde. För att kunna göra det måste vi lära oss att <b><span style="color:red">beräkna</span></b> gränsvärden.
+
 
</big>
 
</big>
  
Rad 141: Rad 108:
 
<b>Lösning:</b>
 
<b>Lösning:</b>
  
Vi förenklar uttrycket i limes genom att separera summan i uttrycket:
+
När <math> x \to \infty </math> går uttrycket i limes <math> \displaystyle \to \frac{\infty}{\infty} </math> som är odefinierat. Därför:
 +
 
 +
Vi förenklar uttrycket i limes genom att separera summan:
  
 
::<math> {4\,x\,+\,5 \over x} = {4\,{\color{Red} x} \over {\color{Red} x}} \,+\,{5 \over x} \,=\, 4 \,+\, {5 \over x} </math>
 
::<math> {4\,x\,+\,5 \over x} = {4\,{\color{Red} x} \over {\color{Red} x}} \,+\,{5 \over x} \,=\, 4 \,+\, {5 \over x} </math>
  
<math> \displaystyle{5 \over x} </math> går mot <math> 0 </math><span style="color:black">:</span> <math> \qquad \displaystyle \lim_{x \to \infty}\, {5 \over x} \, = \, 0 </math>
+
::<math> \displaystyle{5 \over x} \; {\rm går\;mot\;} 0 \quad {\rm när} \quad x \to \infty \quad {\rm dvs} \quad \displaystyle \lim_{x \to \infty}\, {5 \over x} \, = \, 0 </math>
 +
 
 +
:Se [[2.3_Fördjupning_till_Gränsvärde#Gr.C3.A4nsv.C3.A4rde_f.C3.B6r_en_funktion|<b><span style="color:blue">Gränsvärde för en funktion</span></b>]]: Samma typ av gränsvärde.
  
 
Därför kan vi bestämma limes för hela uttrycket:
 
Därför kan vi bestämma limes för hela uttrycket:
Rad 154: Rad 125:
  
 
<div class="ovnE">
 
<div class="ovnE">
 +
 
==== <b><span style="color:#931136">Exempel 3</span></b> ====
 
==== <b><span style="color:#931136">Exempel 3</span></b> ====
  
Rad 160: Rad 132:
 
<b>Lösning:</b>
 
<b>Lösning:</b>
  
Insättningen av <math> \, x = 2 \, </math> i uttrycket ger det odefinierade uttrycket <math> \, \displaystyle{0 \over 0} </math>.
+
Insättningen av <math> \, x = 2 \, </math> i uttrycket ger det odefinierade uttrycket <math> \, \displaystyle{0 \over 0} </math>. Därför:
  
 
Vi faktoriserar både täljaren och nämnaren för att kolla om man ev. kan förkorta.
 
Vi faktoriserar både täljaren och nämnaren för att kolla om man ev. kan förkorta.
Rad 172: Rad 144:
 
Nu kan vi förkorta uttrycket och beräkna limes:
 
Nu kan vi förkorta uttrycket och beräkna limes:
  
::<math> \lim_{x \to 2}\, {x^2\,-\,4 \over 5\,x - 10} \, = \, \lim_{x \to 2}\, {(x + 2) \cdot {\color{Red} {(x-2)}} \over 5\,{\color{Red} {(x-2)}}} \, = \, \lim_{x \to 2} \, {x + 2 \over 5} \, = \, {2 + 2 \over 5} \, = \, {4 \over 5} \, = \, 0,8 </math>
+
::<math> \lim_{x \to 2}\, {x^2\,-\,4 \over 5\,x - 10} \, = \, \lim_{x \to 2}\, {(x + 2) \cdot {\color{Red} {(x-2)}} \over 5\,{\color{Red} {(x-2)}}} \, = \, \lim_{x \to 2} \, {x + 2 \over 5} \, = \, {2 + 2 \over 5} \, = \, {4 \over 5} </math>
 
</div>
 
</div>
  
  
 
<div class="ovnC">
 
<div class="ovnC">
 +
 
==== <b><span style="color:#931136">Exempel 4</span></b> ====
 
==== <b><span style="color:#931136">Exempel 4</span></b> ====
  
Rad 189: Rad 162:
 
::<math> x^2 - x - 6 = 0 \, </math>
 
::<math> x^2 - x - 6 = 0 \, </math>
  
<math>p</math>-<math> q</math>-formeln kan användas, men enligt [[1.2_Repetition_Faktorisering_%26_Vieta_från_Matte_2#Vietas_formler_-_samband_mellan_koefficienter_och_nollst.C3.A4llen|<b><span style="color:blue">Vieta</span></b>]] gäller för lösningarna <math> \, x_1\,</math> och <math> \, x_2 \, </math> (går snabbare) <span style="color:black">:</span>
+
Enligt [[Ekvationer#Vietas_formler|<b><span style="color:blue">Vieta</span></b>]] gäller för lösningarna <math> \, x_1\,</math> och <math> \, x_2 \, </math><span style="color:black">:</span>
  
 
::<math> \begin{align} x_1  +  x_2 & = -(-1) = 1  \\
 
::<math> \begin{align} x_1  +  x_2 & = -(-1) = 1  \\
Rad 195: Rad 168:
 
           \end{align}</math>
 
           \end{align}</math>
  
Två tal vars produkt är <math> \, -6 \, </math> är t.ex. <math> \, 3 \, </math> och <math> \, -2 </math>. Men även deras summa är <math> \, 1 </math>. Därför:
+
Två tal vars produkt är <math> \, -6 \, </math> och deras summa är <math> \, 1 </math>, är <math> \, 3 \, </math> och <math> \, -2 </math>. Därför:
  
 
::<math> \begin{align} x_1 & = 3  \\
 
::<math> \begin{align} x_1 & = 3  \\
Rad 207: Rad 180:
 
Nu kan vi förkorta uttrycket mot nämnaren och beräkna limes:
 
Nu kan vi förkorta uttrycket mot nämnaren och beräkna limes:
  
::<math> \lim_{x \to 3}\, {x^2 - x - 6 \over x - 3} \, = \, \lim_{x \to 3}\, {{\color{Red} {(x-3)}} \cdot (x + 2) \over {\color{Red} {(x-3)}}} \, = \, \lim_{x \to 3}\, (x + 2) \, = \, 3 + 2 \, = \, 5 </math>
+
<math> \lim_{x \to 3}\, {x^2 - x - 6 \over x - 3} \, = \, \lim_{x \to 3}\, {{\color{Red} {(x-3)}} \cdot (x + 2) \over {\color{Red} {(x-3)}}} \, = \, \lim_{x \to 3}\, (x + 2) \, = \, 3 + 2 \, = \, 5 </math>
 
</div>
 
</div>
  
  
 
<div class="ovnC">
 
<div class="ovnC">
 +
 
==== <b><span style="color:#931136">Exempel 5</span></b> ====
 
==== <b><span style="color:#931136">Exempel 5</span></b> ====
  
Rad 273: Rad 247:
 
Jämför även med förra avsnittets [[2.2_Genomsnittlig_förändringshastighet#Exempel_2_Kvadratisk_funktion|<b><span style="color:blue">Exempel 2 Kvadratisk funktion</span></b>]]<span style="color:black">:</span>
 
Jämför även med förra avsnittets [[2.2_Genomsnittlig_förändringshastighet#Exempel_2_Kvadratisk_funktion|<b><span style="color:blue">Exempel 2 Kvadratisk funktion</span></b>]]<span style="color:black">:</span>
  
<math> y \, = \, \boxed{2\,x} \, </math> är derivatan av <math> \, y \, = \, x^2 \, </math>, se [[2.4_Derivatans_definition#Derivatan_som_en_ny_funktion|<b><span style="color:blue">derivatan som en ny funktion</span></b>]].
+
<math> y \, = \, \boxed{2\,x} \, </math> är derivatan av <math> \, y \, = \, x^2 \, </math>, se [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">derivatan som en ny funktion</span></b>]].
 
</div>
 
</div>
  
Rad 294: Rad 268:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2017 Taifun Alishenas. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2020 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 2 maj 2020 kl. 20.26

        <<  Förra avsnitt          Genomgång          Övningar          Fördjupning          Nästa demoavsnitt  >>      



Vårt mål i detta kapitel är att förstå begreppet derivata. Men eftersom derivata är ett gränsvärde, måste vi först behandla begreppet gränsvärde.

Limesbegreppet är centralt inom Analys\(-\) den gren av matematiken som Newton och Leibniz på 1700-talet la grunden till, även kallad Differential- och Integralkalkyl, på engelska Calculus. Det är därför vi numera använder begreppet "analytiskt" istället för "algebraiskt".


Introduktion till gränsvärde

En fallskärmshoppare faller fritt med hastigheten

\( \qquad\quad\;\; \)
\( v(t) = 80\,(1 - 0,88\,^t) \)

där \( \, t = \, \) tiden i sek. I praktiken vet vi att det finns en

maximal hastighet \( \, v_{max} \, \) som hopparen inte kan över-

skrida. Bestäm denna gränshastighet matematiskt.

\( \quad \) 5 186 Uppg 3438 Fritt fall 250.jpg

Fysikalisk tolkning:

Grafen till \( \, v(t) \, \) visar att det finns en maximal hastighet som hopparen inte kan överskrida:

Efter ca. 40 sek blir hopparens hastighet konstant: \( \;\; v \, \approx \, v_{max} = 80 \) m/s. \( \;\; \) Newtons fösta lag:

När ett föremål är i vila eller rör sig med konstant hastighet är summan av alla krafter \( \, = 0 \, \) (och omvänt).

Därav följer: \( \qquad \) Luftmotstånd \( \, \approx \, \) gravitation \( \quad \) dvs \( \quad \) rörelsen är ett fritt fall med luftmotstånd.

Matematisk beskrivning:

Gränsvärdet  för \( \, 80\,(1 - 0,88\,^t) \, \),  då \( \,t \, \) går mot \( \, \infty \; \),  är \( \, 80\).
Man skriver: \( \quad \)
\( \displaystyle {\color{Red} {\lim_{t \to \infty}}}\,{\left(80\,(1 - 0,88\,^t)\right)} \color{Red} { \; = \; 80} \)
\( \quad \) och läser:

\( \qquad\;\; \) Limes av \( \, 80\,(1 - 0,88\,^t) \, \), då \( t \) går mot \( \infty \, \), är \( 80 \).

\( \quad\;\;\, {\color{Red} {\lim}} \, \) står för det latinska ordet \( \, {\color{Red} {\rm limes}} \, \) som betyder gräns.

Limes kan beräknas utan graf:

\( v_{max} \, = \, \displaystyle \lim_{t \to \infty}\,{(80\,(1 - 0,88\,^t))} \, = \, \lim_{t \to \infty}\,{(80 - 80\cdot0,88\,^t)} \, = \, \lim_{t \to \infty}\,{80} - \lim_{t \to \infty}\,{(80\cdot0,88\,^t)} \, = \, 80 \, - \, 0 \, = \, \color{Red} {80} \, \),

eftersom \( \qquad \displaystyle \lim_{t \to \infty}\,{(80\cdot0,88\,^t)} \, = \, \lim_{t \to \infty}\,{80} \cdot \lim_{t \to \infty}\,{(0,88\,^t)} \, = \, 80 \cdot 0 \, = \, 0 \quad \) pga \( \quad 0,88 \, < \, 1 \; \).

Experiment:  Ta upp din miniräknare och slå in: \( \; 0,88\,^{10}, \quad 0,88\,^{100}, \quad 0,88\,^{1000}, \ldots \, \). Vad händer?

\( \qquad\qquad\quad \) Är detta ett bevis för \( \displaystyle \lim_{t \to \infty}\,{(0,88\,^t)} \, = \, 0 \, \)? Nej, men:

Generellt: \( \quad \displaystyle \lim_{t \to \infty}\,{(a\,^t)} \, = \, 0 \, \), om \( \, a \, < \, 1 \,\). Kan bevisas.


Beräkning av gränsvärden

I princip kan limes av en funktion beräknas genom att sätta in i funktionsuttrycket det värde som \( \,x \, \) ska gå emot. Men ofta ger detta odefinierade uttryck.

Därför måste man först förenkla uttrycket, ev. flera gånger. Sedan sätts in det värde som \( \,x \, \) ska gå emot, i funktionsuttrycket.


Exempel 1

Bestäm \( \qquad \displaystyle \lim_{x \to 0}\, {x^2 + 7\,x \over x} \)

Lösning:

För \( \, x = 0 \, \) är uttrycket \( \, \displaystyle{x^2 + 7\,x \over x} \, \) inte definierat därför att nämnaren blir \( \, 0 \).

Därför måste vi förenkla uttrycket.

Vi faktoriserar uttryckets täljare för att kolla om man ev. kan förkorta.

Täljaren kan faktoriseras genom att bryta ut \( x \, \):

\[ \lim_{x \to 0}\, {x^2 + 7\,x \over x} \, = \, \lim_{x \to 0}\, {{\color{Red} x}\:(x + 7) \over {\color{Red} x}} \, = \, \lim_{x \to 0}\, (x + 7) \, = \, 0 + 7 \, = \, 7 \]


Exempel 2

Bestäm \( \qquad \displaystyle \lim_{x \to \infty}\, {4\,x\,+\,5 \over x} \)

Lösning:

När \( x \to \infty \) går uttrycket i limes \( \displaystyle \to \frac{\infty}{\infty} \) som är odefinierat. Därför:

Vi förenklar uttrycket i limes genom att separera summan:

\[ {4\,x\,+\,5 \over x} = {4\,{\color{Red} x} \over {\color{Red} x}} \,+\,{5 \over x} \,=\, 4 \,+\, {5 \over x} \]
\[ \displaystyle{5 \over x} \; {\rm går\;mot\;} 0 \quad {\rm när} \quad x \to \infty \quad {\rm dvs} \quad \displaystyle \lim_{x \to \infty}\, {5 \over x} \, = \, 0 \]
Se Gränsvärde för en funktion: Samma typ av gränsvärde.

Därför kan vi bestämma limes för hela uttrycket:

\[ \lim_{x \to \infty}\, {4\,x\,+\,5 \over x} \, = \, \lim_{x \to \infty}\, \left(4 \,+\, {5 \over x}\right) \,= \, 4\,+\,0 \,= \, 4 \;\, \]


Exempel 3

Bestäm \( \qquad \displaystyle \lim_{x \to 2}\, {x^2\,-\,4 \over 5\,x - 10} \)

Lösning:

Insättningen av \( \, x = 2 \, \) i uttrycket ger det odefinierade uttrycket \( \, \displaystyle{0 \over 0} \). Därför:

Vi faktoriserar både täljaren och nämnaren för att kolla om man ev. kan förkorta.

Täljaren kan faktoriseras med hjälp av konjugatreglen och nämnaren genom att bryta ut:

\[ x^2\,-\,4 = (x\,+\,2)\cdot(x\,-\,2) \]
\[ 5\,x - 10 = 5\,(x\,-\,2) \]

Nu kan vi förkorta uttrycket och beräkna limes:

\[ \lim_{x \to 2}\, {x^2\,-\,4 \over 5\,x - 10} \, = \, \lim_{x \to 2}\, {(x + 2) \cdot {\color{Red} {(x-2)}} \over 5\,{\color{Red} {(x-2)}}} \, = \, \lim_{x \to 2} \, {x + 2 \over 5} \, = \, {2 + 2 \over 5} \, = \, {4 \over 5} \]


Exempel 4

Bestäm \( \qquad \displaystyle \lim_{x \to 3}\, {x^2 - x - 6 \over x - 3} \)

Lösning:

Insättningen av \( \, x = 3 \, \) i uttrycket ger det odefinierade uttrycket \( \, \displaystyle{0 \over 0} \).

För att kunna se om man ev. kan förkorta uttrycket faktoriserar vi täljaren:

\[ x^2 - x - 6 = 0 \, \]

Enligt Vieta gäller för lösningarna \( \, x_1\,\) och \( \, x_2 \, \):

\[ \begin{align} x_1 + x_2 & = -(-1) = 1 \\ x_1 \cdot x_2 & = - 6 \end{align}\]

Två tal vars produkt är \( \, -6 \, \) och deras summa är \( \, 1 \), är \( \, 3 \, \) och \( \, -2 \). Därför:

\[ \begin{align} x_1 & = 3 \\ x_2 & = - 2 \end{align}\]

Täljarens faktorisering blir då:

\[ x^2 - x - 6 = (x - 3) \cdot (x + 2) \]

Nu kan vi förkorta uttrycket mot nämnaren och beräkna limes\[ \lim_{x \to 3}\, {x^2 - x - 6 \over x - 3} \, = \, \lim_{x \to 3}\, {{\color{Red} {(x-3)}} \cdot (x + 2) \over {\color{Red} {(x-3)}}} \, = \, \lim_{x \to 3}\, (x + 2) \, = \, 3 + 2 \, = \, 5 \]


Exempel 5

Bestäm \( \qquad \displaystyle \lim_{x \to \infty}\,\, {x^3\,-\,2 \over 2\,x^3\,+\,3\,x\,-\,4} \)

Lösning:

För att förenkla uttrycket i limes divideras uttryckets täljare och nämnare med den högsta \( \,x\)-potensen, nämligen med \( \,x^3 \):

\[ \lim_{x \to \infty}\,\, {x^3\,-\,2 \over 2\,x^3\,+\,3\,x\,-\,4} \,=\, \lim_{x \to \infty}\,\, {x^3/x^3\,-\,2/x^3 \over 2\,x^3/x^3\,+\,3\,x/x^3\,-\,4/x^3} \,=\, \lim_{x \to \infty}\,\, {1\,-\,{\color{Red} {2/x^3}} \over 2\,+\,{\color{Blue} {3/x^2}}\,-\,{\color{ForestGreen} {4/x^3}}} \]


För att förenkla sista uttrycket använder vi:

\[ \lim_{x \to \infty}\, {\color{Red} {2 \over x^3}} \, = \, \lim_{x \to \infty}\, {\color{Blue} {3 \over x^2}} \, = \, \lim_{x \to \infty} \, {\color{ForestGreen} {4 \over x^3}} \, = \, 0 \]

Insatt i det sista uttrycket blir det:

\[ \lim_{x \to \infty}\,\, {x^3\,-\,2 \over 2\,x^3\,+\,3\,x\,-\,4} \,=\quad \cdots \quad = \, \lim_{x \to \infty}\,\, {1\,-\,{\color{Red} {2/x^3}} \over 2\,+\,{\color{Blue} {3/x^2}}\,-\,{\color{ForestGreen} {4/x^3}}} \,=\, {1\,-\,{\color{Red} 0} \over 2\,+\,{\color{Blue} 0}\,-\,{\color{ForestGreen} 0}} \,=\, {1 \over 2} \]


Exempel 6

Funktionen \( \; f(x) = x^2 \; \) är given.   Bestäm gränsvärdet \( \quad \displaystyle \lim_{h \to 0}\,\,{f(2+h) - f(2) \over h} \; \).

Lösning:

\[ f(2+h) \, = \, (2+h)\,^2 \, = \, {\color{Red} {4 + 4\,h + h\,^2}} \]
\[ f(2) \, = \, 2\,^2 \, = \, {\color{Blue} 4} \]
\[ \lim_{h \to 0}\,\,{f(2+h) - f(2) \over h} \, = \, \lim_{h \to 0} {{\color{Red} {4 + 4\,h + h\,^2}}\,\,-\,\,{\color{Blue} 4} \over h} = \lim_{h \to 0} {4\,h + h^2 \over h} = \]
\[ = \lim_{h \to 0} {{\color{Red} h}\,(4 + h) \over {\color{Red} h}} = \lim_{h \to 0} \, (4 + h) = 4 \]


Exempel 7

Funktionen \( \; f(x) = x^2 \; \) är given.   Bestäm gränsvärdet \( \quad \displaystyle \lim_{h \to 0}\,\,{f(x+h) - f(x) \over h} \; \).

Lösning:

Eftersom uttrycket i limes involverar två variabler \( \, x \, \) och \( \, h \, \) kommer limes inte längre vara ett tal utan ett uttryck i \( \, x \).

\( \displaystyle \lim_{\color{Red} {h \to 0}} \, \) innebär att gränsvärdet ska bildas för \( \, {\color{Red} {h \to 0}} \). Därför borde \( \, x\, \) under gränsprocessen anses som en konstant.

\[ {\color{Red} {f(x+h)}} \, = \, (x+h)^2 \, = \, {\color{Red} {x^2 + 2\,x\,h + h^2}} \]
\[ {\color{Blue} {f(x)}} \, = \, {\color{Blue} {x\,^2}} \]
\[ \lim_{h \to 0}\,\,{{\color{Red} {f(x+h)}} - {\color{Blue} {f(x)}} \over h} \, = \, \lim_{h \to 0} {{\color{Red} {x^2 + 2\,x\,h + h^2}} \, - \, {\color{Blue} {x\,^2}} \over h} \, = \, \lim_{h \to 0} {2\,x\,h + h^2 \over h} = \]
\[ = \lim_{h \to 0} {{\color{Red} h}\,(2\,x + h) \over {\color{Red} h}} = \lim_{h \to 0} \, (2\,x + h) = \boxed{2\,x} \]

Observera att Exempel 6 ovan är ett specialfall av detta exempel för \( x = 2 \, \).

Jämför även med förra avsnittets Exempel 2 Kvadratisk funktion:

\( y \, = \, \boxed{2\,x} \, \) är derivatan av \( \, y \, = \, x^2 \, \), se derivatan som en ny funktion.


Internetlänkar

https://www.youtube.com/watch?v=_oPD-c8IAzs

https://www.youtube.com/watch?v=StP64lMXZjA

https://www.youtube.com/watch?v=fPOX0QX8AH0






Copyright © 2020 TechPages AB. All Rights Reserved.