Skillnad mellan versioner av "1.7 Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(27 mellanliggande versioner av samma användare visas inte)
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.3 Decimaltal| <math> \pmb{\gets} </math> Förra demoavsnitt]]}}
+
{{Not selected tab|[[1.5 Bråkräkning| <<&nbsp;&nbsp;Förra demoavsnitt]]}}
 
{{Selected tab|[[1.7 Potenser|Genomgång]]}}
 
{{Selected tab|[[1.7 Potenser|Genomgång]]}}
 
{{Not selected tab|[[1.7.1_Grundpotensform|Grundpotensform]]}}
 
{{Not selected tab|[[1.7.1_Grundpotensform|Grundpotensform]]}}
 
{{Not selected tab|[[1.7 Övningar till Potenser|Övningar]]}}
 
{{Not selected tab|[[1.7 Övningar till Potenser|Övningar]]}}
{{Not selected tab|[[Diagnosprov i Matte 1b kap 1 Aritmetik|Diagnosprov kap 1]]}}
+
{{Not selected tab|[[1.8 Talsystem med olika baser|Nästa demoavsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
+
== <b><span style="color:#931136">Hur räknar du?</span></b> ==
 
<div class="exempel">
 
<div class="exempel">
 
[[Image: Hur raknar du Potenser 20.jpg]]
 
[[Image: Hur raknar du Potenser 20.jpg]]
 +
<big>
 
:<math> {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 </math>
 
:<math> {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 </math>
  
 
:<math> \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 </math>
 
:<math> \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 </math>
</div>  <!-- exempel -->
+
</big></div>  <!-- exempel -->
  
<div class="tolv"> <!-- tolv1 -->
 
Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med <b><span style="color:red">upphöjt till</span></b>.
 
 
I själva verket betyder <math> \, 2\,^{\color{Red} 3} \, </math> inte <math> \, 2 \cdot 3 \, </math> utan <math> \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, </math> som sedan förkortas till <math> \, 2\,^{\color{Red} 3} </math>.
 
</div> <!-- tolv1 -->
 
  
 +
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td><div class="border-divblue">
+
   <td>[[Image: Potens Bas Exponent_80.jpg]]</td>
<big>Exempel på potens:
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="border-divblue">
 +
<big>Potens med positiv exponent<span style="color:black">:</span>
  
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} </math>  
+
<math> \quad\;\;\; 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8</math>  
  
<b><span style="color:#931136">Potens</span></b> = upprepad multiplikation
+
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
  
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.  
+
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.
</big></div>
+
</big></div></td>
</td>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Potens Bas Exponent_80.jpg]]</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
  
  
<div class="tolv"> <!-- tolv2 -->
+
<big>
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. <math> \, 2\, </math> heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> <b><span style="color:red">exponenten</span></b>.
+
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. Ingredienserna är <math> \, 2\, </math> som heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> som heter <b><span style="color:red">exponenten</span></b>.
  
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att <math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
+
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att<span style="color:black">:</span>
  
Därför det är fel att multiplicera <math> \, 2 \, </math> med <math> \, {\color{Red} 3} \, </math> när man ska beräkna <math> \, 2\,^{\color{Red} 3} </math>.
+
<math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv, en förkortning för upprepad multiplikation (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
</div> <!-- tolv2 -->
+
</big>
  
  
 
<div class="exempel"> <!-- exempel1 -->
 
<div class="exempel"> <!-- exempel1 -->
== <b><span style="color:#931136">Exempel 1</span></b> ==
+
=== <b><span style="color:#931136">Exempel</span></b> ===
 
<big>
 
<big>
 
Förenkla<span style="color:black">:</span> <math> \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} </math>
 
Förenkla<span style="color:black">:</span> <math> \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} </math>
Rad 62: Rad 58:
  
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 
Snabbare<span style="color:black">:</span> <math> \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} </math>
 +
 +
För att förstå den snabbare lösningen se [[1.7_Potenser#Potenslagarna|<b><span style="color:blue">Potenslagarna</span></b>]].
 
</big>
 
</big>
 
</div>  <!-- exempel1 -->
 
</div>  <!-- exempel1 -->
  
<div class="tolv"> <!-- tolv2 -->
 
För att förstå den snabbare lösningen måste man känna till:
 
</div> <!-- tolv2 -->
 
  
== <b><span style="color:#931136">Potenslagarna</span></b> ==
+
<big>Generellt:</big>
<div class="tolv"> <!-- tolv3 -->
+
  
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> \, x \, </math> och <math> \, y \, </math> godtyckliga tal och <math> m,\,n </math> heltal (<math> n\neq 0 </math>):
+
== <b><span style="color:#931136">Potenser med positiva exponenter</span></b> ==
</div> <!-- tolv3 -->
+
 
 +
<div class="ovnE">
 +
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> med <b><span style="color:red">positiv</span></b> exponent (<math> x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 </math>) kan definieras som<span style="color:black">:</span>
 +
 
 +
:::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
 +
 
 +
:::::<big><math> \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 +
</div>
 +
 
 +
 
 +
== <b><span style="color:#931136">Potenslagarna</span></b> ==
  
  
Rad 90: Rad 94:
 
----
 
----
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
 
<b><span style="color:#931136">Potens av en kvot:</span></b> <big><math> \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad </math></big>
</div> <!-- border-divblue -->
+
</div>
  
  
== <b><span style="color:#931136">Potens med positiva heltalsexponenter</span></b> ==
+
<big>
<div class="tolv"> <!-- tolv1 -->
+
Dessa lagar gäller för potenser där baserna <math> \, a,\,b \, </math> är tal <math> \, \neq 0 \, </math> och exponenterna <math> \, x,\,y \, </math> är godtyckliga tal.
 
+
</big>
Potensen <big><math> \, a\,^{\color{Red} x} \, </math></big> kan, om exponenten <math> \, {\color{Red} x} \, </math> är ett positivt heltal och basen <big><math> \, a \, </math></big> ett tal <math> \neq 0 </math>, definieras som
+
 
+
::::::<b>Upprepad multiplikation av <big><math> \, a \, </math></big> med sig själv, <math> \, {\color{Red} x} \, </math> gånger:</b>
+
  
::::::::<big><math> a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} </math></big>
 
</div> <!-- tolv1 -->
 
  
 
<div class="exempel"> <!-- exempel2 -->
 
<div class="exempel"> <!-- exempel2 -->
== <b><span style="color:#931136">Exempel 2</span></b> ==
+
=== <b><span style="color:#931136">Exempel på första potenslagen</span></b> ===
 
<big>
 
<big>
 
Förenkla<span style="color:black">:</span> <big><math> \quad\;\; a\,^2 \, \cdot \, a\,^3 </math></big>
 
Förenkla<span style="color:black">:</span> <big><math> \quad\;\; a\,^2 \, \cdot \, a\,^3 </math></big>
Rad 120: Rad 119:
  
  
<div class="tolv"> <!-- tolv2 -->
+
<big>
 
Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.
 
Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.
</div> <!-- tolv2 -->
+
</big>
  
  
 
<div class="exempel"> <!-- exempel3 -->
 
<div class="exempel"> <!-- exempel3 -->
== <b><span style="color:#931136">Exempel 3</span></b> ==
+
=== <b><span style="color:#931136">Exempel på andra potenslagen</span></b> ===
 
<big>
 
<big>
  
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 </math></big>
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 </math></big>
  
Snabbare med andra potenslagen:
+
Snabbare:
  
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 </math></big>
 
::::<big><math> \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 </math></big>
Rad 138: Rad 137:
  
  
<div class="tolv"> <!-- tolv3a -->
+
<big>
För enkelhets skull definierades potensbegreppet inledningsvis endast för positiva heltalsexponenter. Men potenslagarna gäller även för exponenter som är negativa. Vi börjar med enkla <math> \, 10</math>-potenser och några negativa exponenter:  
+
Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten <math> \, 0 \, </math>:
</div> <!-- tolv3a -->
+
  
 +
Antalet multiplikationer av basen med sig själv kan inte vara negativt eller <math> \, 0 \, </math>. Det behövs nya definitioner resp. slutsatser.
 +
</big>
  
<div class="exempel"> <!-- exempel4 -->
 
== <b><span style="color:#931136">Exempel på potenser med negativa exponenter</span></b> ==
 
<big>
 
  
::::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
+
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
 +
<div class="exempel">
 +
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 +
</div>
  
::::<math> \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} </math>
 
  
::::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
+
<table>
</big>
+
<tr>
</div> <!-- exempel4 -->
+
  <td><div class="ovnC">
 +
<big>Potens med negativ exponent<span style="color:black">:</span>
  
 +
<math> \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>
  
<div class="tolv"> <!-- tolv4a -->
+
<b><span style="color:red">Invertera</span></b> potensen med positiv exponent.
Nu går vi över till den allmänna basen <math> \, a \, </math> och bevisar lagen generellt för alla negativa exponenter:
+
  
 +
----
  
'''Påstående (Lagen om negativ exponent, <math> \, x > 0 </math>)''':
+
Att <b><span style="color:red">"invertera"</span></b> t.ex. <math> \, 10 \, </math> ger <math> \, \displaystyle {1 \over 10} \; </math>.
 +
</big></div>
  
::::<big><math> a^{-x} = \displaystyle{1 \over a^x} </math></big>
+
 
 +
</td>
 +
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="ovnE">
 +
<big>Andra exempel<span style="color:black">:</span></big>
 +
::<math> \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} </math>
 +
 
 +
::<math> \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} </math>
 +
 
 +
::<math> \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} </math>
 +
</div>
 +
</td>
 +
</tr>
 +
</table>
 +
 
 +
<big>Generellt:</big>
 +
 
 +
<div class="ovnC">
 +
'''Påstående''':
 +
 
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om negativ exponent</span></b> <math> \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} </math> =====
 +
</div> <!-- border-divblue -->
  
 
'''Bevis''':
 
'''Bevis''':
Rad 173: Rad 196:
  
 
Efter dessa steg får vi påståendet, fast baklänges.  
 
Efter dessa steg får vi påståendet, fast baklänges.  
</div> <!-- tolv4a -->
+
</div>
  
  
<div class="tolv"> <!-- tolv5 -->
+
== <b><span style="color:#931136">Potenser med exponenten <math> \, 0 \, </math></span></b> ==
Exemplen nedan illustrerar att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan:
+
 
 +
<big>Exempel:</big>
 +
 
 +
<div class="ovnE">
 +
<big><math> \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad </math>
 +
</big></div>
 +
 
 +
 
 +
<big>Generellt:</big>
 +
 
 +
<div class="ovnC">
 +
'''Påstående''':
 +
 
 +
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om nollte potens</span></b> <math> \quad a^0 \; = \; 1 \; </math> =====
 +
</div> <!-- border-divblue -->
 +
 
 +
'''Bevis''':
 +
 
 +
Påståendet kan bevisas genom att använda andra potenslagen:
 +
 
 +
::::<big><math> \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 </math></big>
 +
 
 +
Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet <math> \, 1 </math>:
 +
 
 +
::::<big><math> \displaystyle{a^x \over a^x} \; = \; 1 </math></big>
 +
 
 +
Av raderna ovan följer påståendet:
 +
 
 +
::::<big><math> a^0 \; = \; 1 </math></big>
 +
</div>
 +
 
 +
 
 +
<big>I båda föregående påståenden ska alltid gälla<span style="color:black">:</span> <math> \quad x \, </math> heltal <math> > 0 \, </math> och <math> \, a \, \neq 0 \quad </math>.
 +
 
 +
 
 +
Exemplet nedan ska illustrera lagen ovan genom att visa följande:
 +
 
 +
Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.
 +
 
 +
<b><span style="color:red">Nollte potensen</span></b> bildar övergången mellan positiva och negativa exponenter, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal:
 +
</big>
  
(Potens <math> \; = \; </math> upprepad multiplikation)
 
</div> <!-- tolv5 -->
 
  
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
Rad 209: Rad 271:
  
  
<div class="tolv"> <!-- tolv5 -->
+
<big>
Jämför med produkter med negativa faktorer som är en naturlig fortsättning på produkter med positiva faktorer och <b><span style="color:red">nollprodukten</span></b> däremellan:
+
Jämför exemplet ovan med följande:
 +
</big>
  
(Produkt <math> \; = \; </math> upprepad addition<span style="color:black">:</span> <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} </math>)
 
</div> <!-- tolv5 -->
 
  
 
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
Rad 242: Rad 303:
  
  
<div class="tolv"> <!-- tolv2 -->
+
<big>
Första exemplet ovan illustrerade lagen om nollte potens. Här följer ett bevis:
+
Som man ser är även multiplikation med negativa tal en naturlig fortsättning på multiplikation med positiva tal.
  
 +
Multiplikation med <math> {\color{Red} 0} </math>, kallad <b><span style="color:red">nollprodukten</span></b>, bildar övergången mellan dem, precis som <math> \, 0 \, </math> är övergången mellan positiva och negativa tal.
  
'''Påstående (Lagen om nollte potens)''':
+
Att <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} \, </math> beror på att <math> \, 0 \, </math> är additionens enhet, medan multiplikationens enhet är <math> \, 1 \, </math>.
 
+
</big>
::::<big><math> a^0 \; = \; 1 </math></big>
+
 
+
'''Bevis''':
+
 
+
Påståendet kan bevisas genom att använda andra potenslagen:
+
 
+
::::<big><math> \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 </math></big>
+
 
+
Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet <math> \, 1 </math>:
+
 
+
::::<big><math> \displaystyle{a^x \over a^x} \; = \; 1 </math></big>
+
 
+
Av raderna ovan följer påståendet:
+
 
+
::::<big><math> a^0 \; = \; 1 </math></big>
+
</div> <!-- tolv4 -->
+
  
  
Rad 285: Rad 331:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2016 Math Online Sweden AB. All Rights Reserved.
+
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2010-2017 Math Online Sweden AB. All Rights Reserved.

Nuvarande version från 13 februari 2020 kl. 11.17

        <<  Förra demoavsnitt          Genomgång          Grundpotensform          Övningar          Nästa demoavsnitt  >>      


Hur räknar du?

Hur raknar du Potenser 20.jpg \[ {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 \]

\[ \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 \]


Vad är en potens?

Potens Bas Exponent 80.jpg            

Potens med positiv exponent:

\( \quad\;\;\; 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\)

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


\( \, 2\,^3 \, \) läses \( \, {\color{Red} 2} \) upphöjt till\( \, {\color{Red} 3} \, \) och kallas för  potens. Ingredienserna är \( \, 2\, \) som heter basen och \( \, 3 \, \) som heter exponenten.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

För att förstå den snabbare lösningen se Potenslagarna.


Generellt:

Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Potenslagarna

Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Dessa lagar gäller för potenser där baserna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal.


Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger varken för negativa exponenter eller för exponenten \( \, 0 \, \):

Antalet multiplikationer av basen med sig själv kan inte vara negativt eller \( \, 0 \, \). Det behövs nya definitioner resp. slutsatser.


Potenser med negativa exponenter

Hur raknar du negativa exponenter 20.jpg


Potens med negativ exponent:

\( \qquad \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \)

Invertera potensen med positiv exponent.


Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \; \).


      

Andra exempel:

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]

Generellt:

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Potenser med exponenten \( \, 0 \, \)

Exempel:

\( \quad \displaystyle 2\,^{\color{Red} 0} \;\; = \;\; 1 \quad \)


Generellt:

Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


I båda föregående påståenden ska alltid gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).


Exemplet nedan ska illustrera lagen ovan genom att visa följande:

Potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter.

Nollte potensen bildar övergången mellan positiva och negativa exponenter, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Jämför exemplet ovan med följande:


Varför är \( \; 5 \cdot 0 \, = \, 0 \; \)?

\[ \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 \]
\[ \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 \]
\[ \; \boxed{{\color{Red} {5 \cdot 0 \; = \; 0}}} \]
\[ \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 \]
\[ \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 \]
\[ \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 \]
\[ \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 \]

Att \( \; {\color{Red} 0} \)-orna följer med hela tiden beror på att additionens enhet är \( \, {\color{Red} 0} \), dvs \( \, a + {\color{Red} 0} \, = \, a \).

Därför blir endast \( \, {\color{Red} 0} \, \) kvar, när vi kommer till \( \, {\color{Red} {5 \cdot 0}} \, \) då alla \( \, 5\)-or har försvunnit.


Som man ser är även multiplikation med negativa tal en naturlig fortsättning på multiplikation med positiva tal.

Multiplikation med \( {\color{Red} 0} \), kallad nollprodukten, bildar övergången mellan dem, precis som \( \, 0 \, \) är övergången mellan positiva och negativa tal.

Att \( \, {\color{Red} 0} \, \) tar över rollen av \( \, {\color{Red} 1} \, \) beror på att \( \, 0 \, \) är additionens enhet, medan multiplikationens enhet är \( \, 1 \, \).



Internetlänkar

https://www.youtube.com/watch?v=BMEOkzq3Xo4

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html






Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.