Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 12: Rad 12:
 
<big>Potenser är ett repeterande underavsnitt i avsnittet [[1.1 Polynom|<b><span style="color:blue">Polynom</span></b>]]. Övningar till Potenser finns separat i fliken ovan.</big>
 
<big>Potenser är ett repeterande underavsnitt i avsnittet [[1.1 Polynom|<b><span style="color:blue">Polynom</span></b>]]. Övningar till Potenser finns separat i fliken ovan.</big>
  
== <b><span style="color:#931136">Hur räknar du?</span></b> ==
 
<div class="exempel">
 
[[Image: Hur raknar du Potenser 20.jpg]]
 
<big>
 
:<math> {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 </math>
 
 
:<math> \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 </math>
 
</big></div>  <!-- exempel -->
 
 
 
<big>
 
Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med <b><span style="color:red">upphöjt till</span></b>.
 
 
I själva verket betyder <math> \, 2\,^{\color{Red} 3} \, </math> inte <math> \, 2 \cdot 3 \, </math> utan <math> \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, </math> som sedan förkortas till <math> \, 2\,^{\color{Red} 3} </math>.
 
</big>
 
  
== <b><span style="color:#931136">Vad är en potens?</span></b> ==
+
== <b><span style="color:#931136">Repetition om potenser</span></b> ==
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td><div class="border-divblue">
+
   <td>[[Image: Potens Bas Exponent_80.jpg]]</td>
 +
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<div class="border-divblue">
 
<big>Exempel på potens:
 
<big>Exempel på potens:
  
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} </math>  
+
::<math> 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8</math>  
  
 
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
 
<b><span style="color:#931136">Potens</span></b> = upprepad <b><span style="color:red">multiplikation</span></b>
  
 
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.  
 
av <math> \, 2 \, </math> med sig själv, <math> \, {\color{Red} 3} \, </math> gånger.  
</big></div>
+
</big></div></td>
</td>
+
  <td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[[Image: Potens Bas Exponent_80.jpg]]</td>
+
 
</tr>
 
</tr>
 
</table>
 
</table>
Rad 47: Rad 31:
  
 
<big>
 
<big>
<math> \, 2\,^3 \, </math> läses <math> \, {\color{Red} 2} </math> <b><span style="color:red">upphöjt till</span></b><math> \, {\color{Red} 3} \, </math> och kallas för &nbsp;<b><span style="color:red">potens</span></b>. <math> \, 2\, </math> heter <b><span style="color:red">basen</span></b> och <math> \, 3 \, </math> <b><span style="color:red">exponenten</span></b>.
+
<b><span style="color:red">OBS!</span></b>&nbsp;&nbsp; Förväxla inte begreppen<span style="color:black">:</span> <math> \, 2\,^3 \, </math> är själva potensen, medan <math> \, {\color{Red} 3} \, </math> är <b><span style="color:red">exponenten</span></b> och <math> \, {\color{green} 2}\, </math> förstås <b><span style="color:green">basen</span></b>.
  
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att <math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv (jfr. [[1.2_Räkneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F|<b><span style="color:blue">upprepad addition</span></b>]]).
+
Exponenten <math> \, {\color{Red} 3} \, </math> är inget tal som ingår i beräkningen, utan endast en information om att<span style="color:black">:</span>
  
Därför det är fel att multiplicera <math> \, 2 \, </math> med <math> \, {\color{Red} 3} \, </math> när man ska beräkna <math> \, 2\,^{\color{Red} 3} </math>.
+
<math> \, 2 \, </math> ska multipliceras <math> \, {\color{Red} 3} \, </math> gånger med sig själv, en förkortning för upprepad multiplikation (jfr. [http://mathonline.se:1800/index.php?title=1.2_R%C3%A4kneordning#Varf.C3.B6r_g.C3.A5r_multiplikation_f.C3.B6re_addition.3F <b><span style="color:blue">upprepad addition</span></b>]).
 
</big>
 
</big>
  
Rad 150: Rad 134:
  
  
== <b><span style="color:#931136">Potenser med negativa exponenter</span></b> ==
+
== <b><span style="color:#931136">Potenser med negativa exponenter: Hur räknar du?</span></b> ==
<div class="border-divblue">
+
<div class="exempel">
<big>Exempel på potens med negativ exponent<span style="color:black">:</span>
+
[[Image: Hur raknar du negativa exponenter 20.jpg]]
 +
</div> <!-- exempel -->
  
 +
<big>
 +
Felet beror på att två olika räkneoperationer blandas ihop: multiplikation med "upphöjt till" eller att man inte vet vad minustecknet i exponenten betyder.
 +
 +
<math> \, 2\,^{\color{Red} {-3}} \, </math> betyder inte <math> \, 2 \cdot (-3) \, </math> och inte heller <math> \, {\color{Red} -} 2\,^{\color{Red} 3} \, </math> utan:
 +
</big>
 +
 +
<div class="border-divblue">
 +
<big>
 
::<math> \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
 
::<math> \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad </math>  
  
Rad 187: Rad 180:
 
Uppfattar man <big><math> \, a \, </math></big> som ett bråk med nämnaren <big><math> \, 1 \, </math></big> dvs <math> \, \displaystyle \frac{a}{1} </math>, kan man ersätta divisionerna med multiplikationer med det inversa <math> \, \displaystyle \frac{1}{a} </math>.
 
Uppfattar man <big><math> \, a \, </math></big> som ett bråk med nämnaren <big><math> \, 1 \, </math></big> dvs <math> \, \displaystyle \frac{a}{1} </math>, kan man ersätta divisionerna med multiplikationer med det inversa <math> \, \displaystyle \frac{1}{a} </math>.
  
I [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">Bråkräkning</span></b>]] hade vi lärt oss att division med ett bråk kan skrivas som en multiplikation med det inversa bråket.
+
I [http://mathonline.se:1800/index.php?title=1.5_Br%C3%A5kr%C3%A4kning#Multiplikation_och_division <b><span style="color:blue">Bråkräkning</span></b>] hade vi lärt oss att division med ett bråk kan skrivas som en multiplikation med det inversa bråket.
  
  
Rad 238: Rad 231:
 
Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan (Potens <math> \; = \; </math> upprepad multiplikation):
 
Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och <b><span style="color:red">nollte potensen</span></b> däremellan (Potens <math> \; = \; </math> upprepad multiplikation):
 
</big>
 
</big>
 +
  
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
 
== <b><span style="color:#931136">Varför är <math> \; 5\,^0 \, = \, 1 \; </math>?</span></b> ==
Rad 266: Rad 260:
  
  
<big>
+
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
Jämför med produkter med negativa faktorer som är en naturlig fortsättning på produkter med positiva faktorer och <b><span style="color:red">nollprodukten</span></b> däremellan (Produkt <math> \; = \; </math> upprepad addition<span style="color:black">:</span> <math> \, {\color{Red} 0} \, </math> tar över rollen av <math> \, {\color{Red} 1} </math>):
+
<div class="tolv"> <!-- tolv6 -->
</big>
+
Potenser med exponenter som är [[1.1_Om_tal#Olika_typer_av_tal|<b><span style="color:red">rationella tal</span></b>]] (bråktal) är ett annat sätt att skriva rötter.
  
== <b><span style="color:#931136">Varför är <math> \; 5 \cdot 0 \, = \, 0 \; </math>?</span></b> ==
+
Därför kan de användas för att beräkna både kvadratrötter och högre rötter.
  
<div class="ovnC">
+
Följande samband råder mellan potenser med rationella exponenter och rötter:
::<math> \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 </math>
+
  
::<math> \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 </math>
+
'''Påstående''':
  
::<math> \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 </math>
+
<div class="border-divblue">
 +
===== <b><span style="color:#931136">Lagen om kvadratroten</span></b> <math> \quad a^{1 \over 2} \; = \; \sqrt{a} </math> =====
 +
</div> <!-- border-divblue -->
  
::<math> \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 </math>
+
'''Bevis''':
  
::<math> \; \boxed{{\color{Red} {5 \cdot 0 \; = \; 0}}} </math>
+
Vi multiplicerar <math> a </math><big><math>^{1 \over 2} </math></big> två gånger med sig själv och använder första potenslagen:
  
::<math> \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 </math>
+
:::<big><math> \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a </math></big>
  
::<math> \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 </math>
+
Å andra sidan är definitionen för kvadratroten ur <math> \, a </math><span style="color:black">:</span>
  
::<math> \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 </math>
+
<big><math> \qquad\quad \displaystyle \sqrt{a} \; = \; </math></big> Tal som 2 gånger multiplicerat med sig själv ger <math> \, a </math>.
  
::<math> \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 </math>
+
Av raderna ovan följer<span style="color:black">:</span>
  
Att <math> \; {\color{Red} 0} </math>-orna följer med hela tiden beror på att <b><span style="color:red">additionens enhet</span></b> är <math> \, {\color{Red} 0} </math>, dvs <math> \, a + {\color{Red} 0} \, = \, a </math>.
+
:::<big><math> \displaystyle a^{1 \over 2} \; = \; \sqrt{a} </math></big>
  
Därför blir endast <math> \, {\color{Red} 0} \, </math> kvar, när vi kommer till <math> \, {\color{Red} {5 \cdot 0}} \, </math> då alla <math> \, 5</math>-or har försvunnit.
 
</div>
 
 
 
== <b><span style="color:#931136">Potenser med rationella exponenter</span></b> ==
 
<div class="tolv"> <!-- tolv6 -->
 
Potenser med exponenter som är [[1.1_Om_tal#Olika_typer_av_tal|<b><span style="color:red">rationella tal</span></b>]] (bråktal) är ett annat sätt att skriva rötter.
 
 
Därför kan de användas för att beräkna både kvadratrötter och högre rötter.
 
 
Följande samband råder mellan potenser med rationella exponenter och rötter:
 
 
<div class="border-divblue">
 
===== <b><span style="color:#931136">Lagen om kvadratroten</span></b> <math> \quad a^{1 \over 2} \; = \; \sqrt{a} </math> =====
 
</div> <!-- border-divblue -->
 
  
 
I följande ska alltid gälla<span style="color:black">:</span> <math> \quad m, n \, </math> heltal och <math> \, n \, \neq 0 \quad </math>.
 
I följande ska alltid gälla<span style="color:black">:</span> <math> \quad m, n \, </math> heltal och <math> \, n \, \neq 0 \quad </math>.
Rad 319: Rad 299:
 
'''Bevisidé''':
 
'''Bevisidé''':
  
Vi tar specialfallet <math> n=3 </math>, multiplicerar <math> a </math><big><math>^{1 \over 3} </math></big> tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:
+
Vi visar påståendet för specialfallet <math> \, n=3 </math>:
 +
 
 +
Vi multiplicerar <math> a </math><big><math>^{1 \over 3} </math></big> tre gånger med sig själv och använder första potenslagen:
  
 
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
 
:::<big><math> \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a </math></big>
  
Definitionen för 3:e roten ur <math> a </math> är<span style="color:black">:</span>
+
Å andra sidan är definitionen för 3:e roten ur <math> \, a </math><span style="color:black">:</span>
  
<big><math> \qquad\quad \displaystyle \sqrt[3]{a} \; = \; </math></big> Tal som 3 gånger multiplicerat med sig själv ger <math> a </math>.
+
<big><math> \qquad\quad \displaystyle \sqrt[3]{a} \; = \; </math></big> Tal som 3 gånger multiplicerat med sig själv ger <math> \, a </math>.
  
Men enligt ovan är det tal som 3 gånger med sig själv ger <math> a </math>, just <math> a </math> <big><math>^{1 \over 3} </math></big>. Alltså måste detta tal vara lika med 3:e roten ur <math> a </math>:
+
Av raderna ovan följer<span style="color:black">:</span>
  
 
:::<big><math> \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} </math></big>
 
:::<big><math> \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} </math></big>
Rad 347: Rad 329:
 
Anta i fortsättningen att <math> \, x \, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .  
 
Anta i fortsättningen att <math> \, x \, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> .  
  
::Funktioner av typ <math> y = x^3\, </math> kallas <strong><span style="color:red">potensfunktioner</span></strong>, generellt <math> \; y = c \cdot x^b\, </math>.
+
::Funktioner av typ <math> y = x^3\, </math> kallas för <b><span style="color:red">potensfunktioner</span></b>, generellt <math> \; y = c \cdot x^b\, </math>.
  
::Ekvationer av typ <math> x^3\, = 8 </math> kallas <strong><span style="color:red">potensekvationer</span></strong>, generellt <math> \; x^b\, = c </math>.
+
::Ekvationer av typ <math> x^3\, = 8 </math> kallas för <b><span style="color:red">potensekvationer</span></b>, generellt <math> \; x^b\, = c </math>.
  
I potensfunktioner och -ekvationer förekommer <math> \, x \, </math> i basen. Potensekvationer löses genom <strong><span style="color:red">rotdragning</span></strong>. För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen via rotdragning:
+
I potensfunktioner och -ekvationer förekommer <math> \, x \, </math> i <b><span style="color:red">basen</span></b>.
 +
 
 +
<div class="border-divblue">Potensekvationer löses genom <b><span style="color:red">rotdragning</span></b>.</div>
 +
 
 +
Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.
 +
 
 +
För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen via rotdragning:
  
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; \sqrt[3]{\;\;} \\
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; \sqrt[3]{\;\;} \\
Rad 358: Rad 346:
 
                   \end{align}</math>
 
                   \end{align}</math>
  
Alternativt (med rationell exponent):
+
Alternativt med potens med rationell exponent:
  
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
 
:::<math>\begin{align} x^3 & = 8  \qquad  & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
                   (x^3)^{1 \over 3} & = 8^{1 \over 3}                 \\
+
                   (x^3)^{1 \over 3} & = 8^{1 \over 3} \qquad  & | \; \text{3:e potenslagen på VL}  \\
 
               x^{3\cdot{1 \over 3}} & = 8^{1 \over 3}                  \\
 
               x^{3\cdot{1 \over 3}} & = 8^{1 \over 3}                  \\
 
                                   x  & = 2                              \\
 
                                   x  & = 2                              \\
 
                   \end{align}</math>
 
                   \end{align}</math>
  
Det alternativa sättet att lösa ekvationen ovan visar att rötter även kan uppfattas och skrivas som [[Potenser#Potenser_med_rationella_exponenter|<strong><span style="color:blue">potenser med rationella exponenter</span></strong>]].
+
De alternativa lösningarna av ekvationen ovan är ett exempel på att rötter alltid kan skrivas som [[Potenser#Potenser_med_rationella_exponenter|<b><span style="color:blue">potenser med rationella exponenter</span></b>]].
 
</div> <!-- tolv7 -->
 
</div> <!-- tolv7 -->
  
 +
 +
== <b><span style="color:#931136">Blandade exempel</span></b> ==
 +
[[Image: Potens_Ex_1.jpg]]
 +
 +
----
 +
 +
[[Image: Potens_Ex_2.jpg]]
 +
 +
----
 +
 +
[[Image: Potens_Ex_3.jpg]]
  
  
Rad 389: Rad 388:
  
  
[[Matte:Copyrights|Copyright]] © 2010-2016 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2010-2017 Math Online Sweden AB. All Rights Reserved.

Versionen från 17 april 2017 kl. 16.32

        <<  Tillbaka till Polynom          Genomgång          Övningar      


Potenser är ett repeterande underavsnitt i avsnittet Polynom. Övningar till Potenser finns separat i fliken ovan.


Repetition om potenser

Potens Bas Exponent 80.jpg            

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \; = \; 8\]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.


OBS!   Förväxla inte begreppen: \( \, 2\,^3 \, \) är själva potensen, medan \( \, {\color{Red} 3} \, \) är exponenten och \( \, {\color{green} 2}\, \) förstås basen.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att:

\( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv, en förkortning för upprepad multiplikation (jfr. upprepad addition).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)


För att förstå den snabbare lösningen måste man känna till:

Potenslagarna

Följande lagar gäller för potenser där basernna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal:


Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)

Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger inte för negativa exponenter.

Antalet multiplikationer av basen med sig själv kan inte vara negativt. Det behövs en ny definition.


Potenser med negativa exponenter: Hur räknar du?

Hur raknar du negativa exponenter 20.jpg

Felet beror på att två olika räkneoperationer blandas ihop: multiplikation med "upphöjt till" eller att man inte vet vad minustecknet i exponenten betyder.

\( \, 2\,^{\color{Red} {-3}} \, \) betyder inte \( \, 2 \cdot (-3) \, \) och inte heller \( \, {\color{Red} -} 2\,^{\color{Red} 3} \, \) utan:

\[ \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \]

Potens med negativ exponent = upprepad division av \( \, 1 \, \) med basen \( \, 2 \), \( \, {\color{Red} 3} \, \) gånger.

Eller: \( \qquad\qquad\qquad\qquad\qquad\; \) upprepad multiplikation med basens invers \( \displaystyle \frac{1}{2} \), \( \, {\color{Red} 3} \, \) gånger.

Negativ exponent innebär att invertera potensen med positiv exponent.


Andra exempel: \( \qquad\qquad\qquad \) Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \)

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]


Generellt:


Potensen \( \, a\,^{\color{Red} {-x}} \, \) med negativ exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad division av \( \, 1 \, \) med basen \( \, a \, \) (eller multiplikation med \( \, \displaystyle \frac{1}{a} \, \)), \( \, {\color{Red} x} \, \) gånger:
\( \displaystyle a\,^{\color{Red} {-x}} \; = \; 1 \, / \, \underbrace{a \, / \, a \, / \, a \, / \quad \ \cdots \quad / a}_{{\color{Red} x}\;{\rm gånger}} \quad {\color{Red} =} \quad 1 \cdot \underbrace{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \quad \cdot \cdots \quad \cdot \frac{1}{a}}_{{\color{Red} x}\;{\rm gånger}} \; = \; {1 \over a^x}\)

Övergången från division till multiplikation (den röda likheten) kan motiveras så här:

Uppfattar man \( \, a \, \) som ett bråk med nämnaren \( \, 1 \, \) dvs \( \, \displaystyle \frac{a}{1} \), kan man ersätta divisionerna med multiplikationer med det inversa \( \, \displaystyle \frac{1}{a} \).

I Bråkräkning hade vi lärt oss att division med ett bråk kan skrivas som en multiplikation med det inversa bråket.


I de följande två påståendena ska gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och nollte potensen däremellan (Potens \( \; = \; \) upprepad multiplikation):


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Potenser med exponenter som är rationella tal (bråktal) är ett annat sätt att skriva rötter.

Därför kan de användas för att beräkna både kvadratrötter och högre rötter.

Följande samband råder mellan potenser med rationella exponenter och rötter:

Påstående:

Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)

Bevis:

Vi multiplicerar \( a \)\(^{1 \over 2} \) två gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 2} \cdot a^{1 \over 2} \; = \; a^{{1 \over 2} + {1 \over 2}} \; = \; a^{2 \over 2} \; = \; a^1 \; = \; a \)

Å andra sidan är definitionen för kvadratroten ur \( \, a \):

\( \qquad\quad \displaystyle \sqrt{a} \; = \; \) Tal som 2 gånger multiplicerat med sig själv ger \( \, a \).

Av raderna ovan följer:

\( \displaystyle a^{1 \over 2} \; = \; \sqrt{a} \)


I följande ska alltid gälla: \( \quad m, n \, \) heltal och \( \, n \, \neq 0 \quad \).

Påstående:

Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)

Bevisidé:

Vi visar påståendet för specialfallet \( \, n=3 \):

Vi multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder första potenslagen:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Å andra sidan är definitionen för 3:e roten ur \( \, a \):

\( \qquad\quad \displaystyle \sqrt[3]{a} \; = \; \) Tal som 3 gånger multiplicerat med sig själv ger \( \, a \).

Av raderna ovan följer:

\( \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} \)

Denna bevisidé kan vidareutvecklas till det allmänna fallet:

Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas för potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas för potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen.

Potensekvationer löses genom rotdragning.

Rotdragning är ekvivalent (identiskt) med potentiering med rationella exponenter.

För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt med potens med rationell exponent:

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \qquad & | \; \text{3:e potenslagen på VL} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

De alternativa lösningarna av ekvationen ovan är ett exempel på att rötter alltid kan skrivas som potenser med rationella exponenter.


Blandade exempel

Potens Ex 1.jpg


Potens Ex 2.jpg


Potens Ex 3.jpg


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2017 Math Online Sweden AB. All Rights Reserved.