Skillnad mellan versioner av "3.3 Terasspunkter"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 9: | Rad 9: | ||
− | [[Media: Lektion | + | [[Media: Lektion 25 Terasspunkter Ruta.pdf|<b><span style="color:blue">Lektion 25 Terasspunkter</span></b>]] |
__NOTOC__ | __NOTOC__ | ||
<big> | <big> | ||
Rad 17: | Rad 17: | ||
<tr> | <tr> | ||
<td>[[Image: Kritiska punkter.jpg]]</td> | <td>[[Image: Kritiska punkter.jpg]]</td> | ||
− | <td> | + | <td> </td> |
− | <td> | + | <td> |
− | + | Tre punkter där kurvan har tangenter med lutningen <math> \, 0 \, </math> (s.k. ''kritiska punkter''): | |
− | |||
− | + | Ett minimum i <math> \, x = -2 \, </math> där gäller<span style="color:black">:</span> <math> \, f\,'(-2) \, = \, 0 \quad {\rm och} \quad f\,''(-2) \, > \, 0 </math>, se [[3.2_Lokala_maxima_och_minima#Regler_om_max.2Fmin_med_andraderivatan|<b><span style="color:blue">reglerna</span></b>]] i förra avsnitt. | |
+ | Ett maximum i <math> \, x = 2 \, </math> där gäller <span style="color:black">:</span> <math> \, f\,'(2) \quad = \, 0 \quad {\rm och} \quad f\,''\,(2) \;\; < \;\, 0 </math>, se [[3.2_Lokala_maxima_och_minima#Regler_om_max.2Fmin_med_andraderivatan|<b><span style="color:blue">reglerna</span></b>]] i förra avsnitt. | ||
− | + | <div class="ovnE"><small> | |
+ | En <b><span style="color:red">terasspunkt</span></b> i <math> \, x = 0 \, </math> <span style="color:black">:</span> <math> \, f\,'(0) \quad = \, 0 \quad {\rm och} \quad f\,''(0) \quad {\color {Red} =} \;\; 0 </math>, men <math> \; f\,'''(0) \, {\color {Red} \neq} \, 0 \; </math>. | ||
+ | </small></div> | ||
− | + | Generellt: | |
− | |||
</td> | </td> | ||
</tr> | </tr> | ||
Rad 38: | Rad 39: | ||
==== <b><span style="color:#931136">Regeln om terasspunkt med derivator</span></b> ==== | ==== <b><span style="color:#931136">Regeln om terasspunkt med derivator</span></b> ==== | ||
<div class="border-divblue"> | <div class="border-divblue"> | ||
− | <math> f\,'(a) \, = \, f\,''(a) \, = \, 0 \; </math> och <math> \; f\,'''(a) \, \neq \, 0 \quad \Longrightarrow \quad </math> Funktionen <math> \; y = f(x) \; </math> har en <b><span style="color:red">terasspunkt</span></b> i <math> \; x = a \; </math>. | + | <math> f\,'(a) \, = \, f\,''(a) \, = \, 0 \; </math> och <math> \; {\color {Red} {f\,'''(a) \, \neq \, 0}} \quad \Longrightarrow \quad </math> Funktionen <math> \; y = f(x) \; </math> har en <b><span style="color:red">terasspunkt</span></b> i <math> \; x = a \; </math>. |
---- | ---- | ||
− | Om <math> \, f\,'(a) = f\,''(a) = f\,'''(a) = 0 \, </math> kan | + | Om <math> \, f\,'(a) = f\,''(a) = f\,'''(a) = 0 \, </math> kan endast en korrekt [[3.3_Terasspunkter#Regeln_om_terasspunkt_med_teckenstudie|<b><span style="color:blue">teckenstudie</span></b>]] eller högre derivator avgöra saken.<br> |
− | + | ||
− | + | ||
</div> | </div> | ||
Rad 74: | Rad 73: | ||
\end{array}</math> | \end{array}</math> | ||
− | Vi ser att <math> \, f\,'(0) = f\,''(0) = 0 \, </math> och <math> \, f\,'''(0) \neq 0 </math>. Av regeln ovan följer att <math> \, f(x)\, </math> har en < | + | Vi ser att <math> \, f\,'(0) = f\,''(0) = 0 \, </math> och <math> \, f\,'''(0) \neq 0 </math>. Av regeln ovan följer att <math> \, f(x)\, </math> har en <b><span style="color:red">terasspunkt</span></b> i <math> \, x = 0 \, </math> som visas på bilden till vänster. |
</small></div> | </small></div> | ||
− | '''Bilden i mitten''' visar att derivatan <math> \, f\,'(x) = 3\,x^2 \, </math> endast har ett nollställe i <math> \, x = 0 \, </math> som är en [[ | + | '''Bilden i mitten''' visar att derivatan <math> \, f\,'(x) = 3\,x^2 \, </math> endast har ett nollställe i <math> \, x = 0 \, </math> som är en [[1.2_Faktorisering_av_polynom#Dubbelrot|<b><span style="color:blue">dubbelrot</span></b>]]. Dvs kurvan skär inte <math> \, x</math>-axeln, utan ''berör'' den endast. Med andra ord, derivatan byter inte tecken i <math> \, x = 0 \, </math> utan är positiv på båda sidor av <math> \, x = 0 \, </math>. Av detta följer att själva funktionen <math> \, f(x) = x^3 \, </math> är växande på båda sidor av <math> \, x = 0 \, </math> <math>-</math> ett kännetecken för terasspunkter. Generellt gäller: |
<div class="border-divblue"> | <div class="border-divblue"> | ||
Rad 151: | Rad 150: | ||
<tr> | <tr> | ||
<td><math> \,f(x) </math></td> | <td><math> \,f(x) </math></td> | ||
− | <td> < | + | <td> <b><big><big>↗</big></big></b> </td> |
− | <td> < | + | <td> <b><span style="color:red">Terass</span></b> </td> |
− | <td> < | + | <td> <b><big><big>↗</big></big></b> </td> |
</tr> | </tr> | ||
</table> | </table> | ||
Rad 164: | Rad 163: | ||
# Derivatan har tecknet <math>+</math> till vänster och även <math> + </math> till höger om <math> \, 0 \, </math> dvs derivatan byter inte tecken kring sitt nollställe. | # Derivatan har tecknet <math>+</math> till vänster och även <math> + </math> till höger om <math> \, 0 \, </math> dvs derivatan byter inte tecken kring sitt nollställe. | ||
− | Enligt regeln om terasspunkt med teckenstudie drar vi slutsatsen att funktionen <math> f(x)\, </math> har en < | + | Enligt regeln om terasspunkt med teckenstudie drar vi slutsatsen att funktionen <math> f(x)\, </math> har en <b><span style="color:red">terasspunkt</span></b> i <math> \, x = 0 </math>. |
</small></div> | </small></div> | ||
− | Avgörande för att teckenstudie är en korrekt algebraisk metod är förutsättningen vi gjorde inledningsvis, nämligen att <math> \; y \, = \, f(x) \; </math> är [[1.5_Kontinuerliga_och_diskreta_funktioner|< | + | Avgörande för att teckenstudie är en korrekt algebraisk metod är förutsättningen vi gjorde inledningsvis, nämligen att <math> \; y \, = \, f(x) \; </math> är [[1.5_Kontinuerliga_och_diskreta_funktioner|<b><span style="color:blue">kontinuerlig</span></b>]] i alla punkter av det betraktade området. |
Rad 201: | Rad 200: | ||
\end{array}</math> | \end{array}</math> | ||
− | Dvs redan första kravet i [[3.3_Terasspunkter#Regeln_om_terasspunkt_med_derivator|< | + | Dvs redan första kravet i [[3.3_Terasspunkter#Regeln_om_terasspunkt_med_derivator|<b><span style="color:blue">regeln om terasspunkt med derivator</span></b>]], nämligen att derivatan ska vara <math> \, 0 \, </math> för <math> \, x = 0 \, </math> är inte uppfyllt<span style="color:black">:</span> <math> \, f(x) \, </math> har ingen terasspunkt i <math> \, x = 0 \, </math>. Grafen har lurat oss. |
</div> <!-- forsmak --> | </div> <!-- forsmak --> | ||
Rad 215: | Rad 214: | ||
'''Bilden i mitten''' visar att derivatan inte har något nollställe vilket visar att funktionen varken har extrempunkter eller terasspunkter. Derivatan är alltid positiv och antar i <math> x = 0 </math> värdet <math> \, 0,5 \, </math>. Om detta värde hade varit <math> \, 0 \, </math> hade funktionen haft en terasspunkt i <math> x = 0 </math>. | '''Bilden i mitten''' visar att derivatan inte har något nollställe vilket visar att funktionen varken har extrempunkter eller terasspunkter. Derivatan är alltid positiv och antar i <math> x = 0 </math> värdet <math> \, 0,5 \, </math>. Om detta värde hade varit <math> \, 0 \, </math> hade funktionen haft en terasspunkt i <math> x = 0 </math>. | ||
− | '''Bilden till höger''' visar att andraderivatan har ett nollställe i <math> \, x = 0 \, </math>, där grafen skär <math> \, x</math>-axeln. Vad innebär detta? Vi har inte haft ett sådant fall där derivatan är skild från <math> \, 0 \, </math>, men andraderivatan är <math> \, 0 \, </math>. Därför handlar det om en speciell punkt på kurvan som varken är extrem- eller terasspunkt, för i dessa fall borde ju derivatan vara <math> \, 0 \, </math>. Faktiskt handlar det om en ny typ av punkt som kallas < | + | '''Bilden till höger''' visar att andraderivatan har ett nollställe i <math> \, x = 0 \, </math>, där grafen skär <math> \, x</math>-axeln. Vad innebär detta? Vi har inte haft ett sådant fall där derivatan är skild från <math> \, 0 \, </math>, men andraderivatan är <math> \, 0 \, </math>. Därför handlar det om en speciell punkt på kurvan som varken är extrem- eller terasspunkt, för i dessa fall borde ju derivatan vara <math> \, 0 \, </math>. Faktiskt handlar det om en ny typ av punkt som kallas <b><span style="color:red">inflexionspunkt</span></b>. |
Rad 230: | Rad 229: | ||
<math> \, x = 2 \, </math>. Sedan byter du svängriktning och rattar till vänster. | <math> \, x = 2 \, </math>. Sedan byter du svängriktning och rattar till vänster. | ||
− | Punkten i <math> \, x = 2 \, </math> där du byter svängriktning kallas för < | + | Punkten i <math> \, x = 2 \, </math> där du byter svängriktning kallas för <b><span style="color:red">inflexionspunkt</span></b>. |
Inflexionspunkter är sådana där kurvan går över från en högersväng | Inflexionspunkter är sådana där kurvan går över från en högersväng | ||
Rad 256: | Rad 255: | ||
==== <b><span style="color:#931136">Regeln om inflexionspunkter</span></b> ==== | ==== <b><span style="color:#931136">Regeln om inflexionspunkter</span></b> ==== | ||
<div class="border-divblue"> | <div class="border-divblue"> | ||
− | <math> f\,''(a) \, = \, 0 \; </math> och <math> \; f\,'''(a) \, \neq \, 0 \; \quad \Longrightarrow \quad </math> Funktionen <math> \; y \, = \, f(x) \; </math> har en < | + | <math> f\,''(a) \, = \, 0 \; </math> och <math> \; f\,'''(a) \, \neq \, 0 \; \quad \Longrightarrow \quad </math> Funktionen <math> \; y \, = \, f(x) \; </math> har en <b><span style="color:red">inflexionspunkt</span></b> i <math> \; x = a \; </math>. |
---- | ---- | ||
− | Om dessutom <math> \; f\,'(a) \, = \, 0 \; </math> är <math> \; x = a \; </math> en terasspunkt. (Samma som [[3.3_Terasspunkter#Regeln_om_terasspunkt_med_derivator|< | + | Om dessutom <math> \; f\,'(a) \, = \, 0 \; </math> är <math> \; x = a \; </math> en terasspunkt. (Samma som [[3.3_Terasspunkter#Regeln_om_terasspunkt_med_derivator|<b><span style="color:blue">tidigare</span></b>]]) |
---- | ---- | ||
En terasspunkt är alltid en inflexionspunkt, men inte tvärtom. | En terasspunkt är alltid en inflexionspunkt, men inte tvärtom. | ||
Rad 277: | Rad 276: | ||
− | [[Matte:Copyrights|Copyright]] © 2011-2016 | + | [[Matte:Copyrights|Copyright]] © 2011-2016 Taifun Alishenas. All Rights Reserved. |
Versionen från 1 januari 2017 kl. 15.58
<< Förra avsnitt | Genomgång | Övningar | Nästa avsnitt >> |
Vad är en terasspunkt?
Ett maximum i \( \, x = 2 \, \) där gäller : \( \, f\,'(2) \quad = \, 0 \quad {\rm och} \quad f\,''\,(2) \;\; < \;\, 0 \), se reglerna i förra avsnitt. En terasspunkt i \( \, x = 0 \, \) : \( \, f\,'(0) \quad = \, 0 \quad {\rm och} \quad f\,''(0) \quad {\color {Red} =} \;\; 0 \), men \( \; f\,'''(0) \, {\color {Red} \neq} \, 0 \; \). Generellt: |
Regeln om terasspunkt med derivator
\( f\,'(a) \, = \, f\,''(a) \, = \, 0 \; \) och \( \; {\color {Red} {f\,'''(a) \, \neq \, 0}} \quad \Longrightarrow \quad \) Funktionen \( \; y = f(x) \; \) har en terasspunkt i \( \; x = a \; \).
Om \( \, f\,'(a) = f\,''(a) = f\,'''(a) = 0 \, \) kan endast en korrekt teckenstudie eller högre derivator avgöra saken.
Tredjederivatan är inget annat än andraderivatans derivata. Man får den genom att derivera andraderivatan en gång till enligt deriveringsreglerna.
Kritiska punkter
En punkt \( \, x = a \, \) kallas för kritisk punkt om \( \, f\,'(a) = 0 \, \).
En kritisk punkt kan vara ett maximum, ett minimum eller en terasspunkt.
Att vara maximi-, minimi- eller terasspunkt kallas för den kritiska punktens karaktär eller typ.
Exempel på terasspunkt med derivator
Undersök med derivator vilken typ av kritisk punkt funktionen \( \, f(x) = x\,^3 \, \) har i punkten \( \, x = 0 \, \).
Lösning med derivator:
- \[\begin{array}{rclclcl} f(x) & = & x\,^3 & & \\ f'(x) & = & 3\,x\,^2 & \Longrightarrow & f'(0) = 3\cdot 0^2 = 3\cdot 0 & = & 0 \\ f''(x) & = & 6\,x & \Longrightarrow & f''(0) = 6\cdot 0 & = & 0 \\ f'''(x) & = & 6 & \Longrightarrow & f'''(0) = 6 & \neq & 0 \end{array}\]
Vi ser att \( \, f\,'(0) = f\,''(0) = 0 \, \) och \( \, f\,'''(0) \neq 0 \). Av regeln ovan följer att \( \, f(x)\, \) har en terasspunkt i \( \, x = 0 \, \) som visas på bilden till vänster.
Bilden i mitten visar att derivatan \( \, f\,'(x) = 3\,x^2 \, \) endast har ett nollställe i \( \, x = 0 \, \) som är en dubbelrot. Dvs kurvan skär inte \( \, x\)-axeln, utan berör den endast. Med andra ord, derivatan byter inte tecken i \( \, x = 0 \, \) utan är positiv på båda sidor av \( \, x = 0 \, \). Av detta följer att själva funktionen \( \, f(x) = x^3 \, \) är växande på båda sidor av \( \, x = 0 \, \) \(-\) ett kännetecken för terasspunkter. Generellt gäller:
Funktionen \( \; y = f(x) \; \) har en terasspunkt i \( \; x = a \qquad\;\;\, \Longrightarrow \qquad\quad f\,'(a) \, = \, f\,''(a) \, = \, 0 \; \).
\( f\,(x) \, \) är ett tredjegradspolynom som har en terasspunkt \( \quad \Longrightarrow \quad f\,'(x) \, \) är ett andragradspolynom som
endast har ett nollställe, dvs nollstället är en dubbelrot.
Alternativt till användning av derivator finns det alltid möjligheten att genomföra en teckenstudie för att känna igen en terasspunkt:
Regeln om terasspunkt med teckenstudie
\( f\,'(a) = 0 \; \) och \( \; f\,'(x) \) inte byter tecken i \( \, x=a \quad \Longrightarrow \quad \) Funktionen \( \; y = f(x) \; \) har en terasspunkt i \( \; x = a \; \).
Med andra ord, i en terasspunkt \( \, x=a \) måste derivatan vara \( \, 0 \), utan att byta tecken i \( \, a \), dvs derivatan är antingen positiv eller negativ på båda sidor av \( \, x=a \).
Exempel på terasspunkt med teckenstudie
Undersök med en teckenstudie vilken typ av kritisk punkt funktionen \( \, f(x) = x\,^3 \, \) har i punkten \( \, x = 0 \, \).
Lösning med teckenstudie:
Vi hade redan bestämt att
derivatan var \( \, 0 \) för \( \, x = 0 \, \):
|
|
Nu ska vi undersöka derivatans tecken till vänster och till höger om nollstället \( \, x = 0 \).
Vi väljer t.ex. punkterna \( \, x = -0,1 \) och \( \, x = 0,1 \) och bestämmer derivatans tecken i dessa punkter:
|
|
Dessa resultat är infogade i teckentabellen till höger som visar:
- \( \, f\,'(0) = 0 \, \)
- Derivatan har tecknet \(+\) till vänster och även \( + \) till höger om \( \, 0 \, \) dvs derivatan byter inte tecken kring sitt nollställe.
Enligt regeln om terasspunkt med teckenstudie drar vi slutsatsen att funktionen \( f(x)\, \) har en terasspunkt i \( \, x = 0 \).
Avgörande för att teckenstudie är en korrekt algebraisk metod är förutsättningen vi gjorde inledningsvis, nämligen att \( \; y \, = \, f(x) \; \) är kontinuerlig i alla punkter av det betraktade området.
Hur grafen kan lura oss
- \[\begin{array}{rcl} f(x) & = & x^3 + \, 0,5\,x \\ f'(x) & = & 3\,x^2 + \, 0,5 \\ f'(0) & = & 3\cdot 0^2 + \, 0,5 = 3\cdot 0 \, + \, 0,5 = 0 \, + \, 0,5 \, = \, 0,5 \, \neq \, 0 \end{array}\]
Dvs redan första kravet i regeln om terasspunkt med derivator, nämligen att derivatan ska vara \( \, 0 \, \) för \( \, x = 0 \, \) är inte uppfyllt: \( \, f(x) \, \) har ingen terasspunkt i \( \, x = 0 \, \). Grafen har lurat oss.
Vill man använda grafer borde man först undersöka funktionen med de strikta algebraiska reglerna och sedan rita grafer för att visualisera resultatet. I det här fallet är det lämpligt att även rita tangenten till \( \, f(x) \, \) i \( \, x = 0 \, \). Lägger man till graferna till derivatan och andraderivatan får man en fullständig överblick över funktionens beteende i och kring \( \, x = 0 \, \):
Bilden till vänster visar funktionens graf samt tangenten till kurvan i \( \, x = 0 \). Tangenten är inte horisontell dvs har inte lutningen \( \, 0 \). I beräkningen ovan hade vi fått: \( f'(x) = 0,5 \neq 0 \). Därmed är även tangentens lutning \( \, 0,5 \, \) och dess ekvation: \( y = 0,5\,x \). Därför föreligger i \( \, x = 0 \, \) inte en terasspunkt.
Bilden i mitten visar att derivatan inte har något nollställe vilket visar att funktionen varken har extrempunkter eller terasspunkter. Derivatan är alltid positiv och antar i \( x = 0 \) värdet \( \, 0,5 \, \). Om detta värde hade varit \( \, 0 \, \) hade funktionen haft en terasspunkt i \( x = 0 \).
Bilden till höger visar att andraderivatan har ett nollställe i \( \, x = 0 \, \), där grafen skär \( \, x\)-axeln. Vad innebär detta? Vi har inte haft ett sådant fall där derivatan är skild från \( \, 0 \, \), men andraderivatan är \( \, 0 \, \). Därför handlar det om en speciell punkt på kurvan som varken är extrem- eller terasspunkt, för i dessa fall borde ju derivatan vara \( \, 0 \, \). Faktiskt handlar det om en ny typ av punkt som kallas inflexionspunkt.
Inflexionspunkter
Terasspunkter är specialfall av inflexionspunkter, eftersom kurvan byter alltid svängriktning i en terasspunkt.
Men inte alla inflexionspunkter är terasspunkter. Inflexionspunkter kan ha tangenter med vilken lutning som helst.
Terasspunkter är sådana inflexionspunkter där tangenten har lutningen \( \, 0 \, \).
Pga funktionens kontinuitet finns alltid en inflexionspunkt mellan två extrempunkter.
Regeln om inflexionspunkter
\( f\,''(a) \, = \, 0 \; \) och \( \; f\,'''(a) \, \neq \, 0 \; \quad \Longrightarrow \quad \) Funktionen \( \; y \, = \, f(x) \; \) har en inflexionspunkt i \( \; x = a \; \).
Om dessutom \( \; f\,'(a) \, = \, 0 \; \) är \( \; x = a \; \) en terasspunkt. (Samma som tidigare)
En terasspunkt är alltid en inflexionspunkt, men inte tvärtom.
För att hitta inflexionspunkter ställer man alltså upp andraderivatan, sätter den till \( \, 0 \, \) och beräknar\( \, x \), dvs andraderivatans nollställen. Sedan kontrollerar man om tredjederivatan verkligen är skild från \( \, 0 \, \) för andraderivatans nollställen.
Dessutom gäller det: Om \( \, f\,'''(a) > 0 \, \) är kurvan konkav i \( \, x = a \ ,\) och vi har en övergång från höger- till vänstersväng \(-\) som i grafen ovan. Om däremot \( \, f\,'''(a) < 0 \, \) är kurvan konvex i \( \, x = a \ ,\) och kurvan går över från en vänster- till en högersväng.
Copyright © 2011-2016 Taifun Alishenas. All Rights Reserved.