Skillnad mellan versioner av "Potenser"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 209: Rad 209:
 
<div class="exempel"> <!-- exempel4 -->
 
<div class="exempel"> <!-- exempel4 -->
 
== <b><span style="color:#931136">Exempel på potenser med negativa exponenter</span></b> ==
 
== <b><span style="color:#931136">Exempel på potenser med negativa exponenter</span></b> ==
 
+
<big>
  
 
::::<big><math> \displaystyle{a^{-1} \, = \, {1 \over a^1} \, = \, {1 \over a}} </math></big>
 
::::<big><math> \displaystyle{a^{-1} \, = \, {1 \over a^1} \, = \, {1 \over a}} </math></big>
Rad 218: Rad 218:
  
 
::::<big><math> \displaystyle{a^{-3} \, = \, {1 \over a^3} \, = \, {1 \over a \cdot a \cdot a}} </math></big>
 
::::<big><math> \displaystyle{a^{-3} \, = \, {1 \over a^3} \, = \, {1 \over a \cdot a \cdot a}} </math></big>
 
+
</big>
 
</div> <!-- exempel4 -->
 
</div> <!-- exempel4 -->
  

Versionen från 23 juni 2015 kl. 10.24

       <-- Till Polynom          Genomgång          Övningar      


Vad är en potens?

Hur raknar du Potenser 20.jpg \[ {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 \]

\[ \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 \]

Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med upphöjt till.

Hjärnan associerar \( \, 2 \, \) och \( \, 3 \, \) blind till multiplikationstabellen vilket ger \( \, 6 \, \).

I själva verket betyder \( \, 2\,^{\color{Red} 3} \, \) inte \( \, 2 \cdot 3 \, \) utan \( \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, \) och är en:.

Potens

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \]

Upprepad multiplikation av

\(2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.

           Potens Bas Exponent 80.jpg


\( \, 2\,^3 \, \) läses \( \, {\color{Red} 2} \) upphöjt till\( \, {\color{Red} 3} \, \) och kallas för  potens. \( \, 2\, \) heter basen och \( \, 3 \, \) exponenten.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal i vanlig bemärkelse utan endast en information om att \( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv (jfr. upprepad addition).


Exempel 1

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)


För att förstå den snabbare lösningen se potenslagarna.


Potens med positiva heltalsexponenter

Potensen \( \, a\,^x \, \) kan, om exponenten \( \, {\color{Red} x} \, \) är ett positivt heltal och basen \( a\, \) ett tal \( \neq 0 \), definieras som upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:


\( a^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)


Exempel 2

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen är ett exempel på den första potenslagen:


Potenslagarna

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( \, x \, \) och \( \, y \, \) godtyckliga tal och \( m,\,n \) heltal (\( n\neq 0 \)):


Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\quad \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\qquad\! a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\qquad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Lagen om rationell exponent: \( \qquad\qquad a^{m \over n} \; = \; \sqrt[n]{a^m} \qquad\qquad \)

Specialfall \(m=1\) (högre rötter): \( \qquad\quad\;\, a^{1 \over n} \; = \; \sqrt[n]{a} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


För enkelhets skull definierades potensbegreppet inledningsvis endast för positiva heltalsexponenter \( \, x \, \) och \( \, y \). Men potenslagarna gäller även för negativa och rationella exponenter. I formuleringen "negativ exponent" antas \( \, x > 0 \).


Bevis(idéer) och exempel för några potenslagar

Påstående (Första potenslagen):

\( a\,^x \cdot a\,^y \; = \; a\,^{x \, + \, y} \)

Bevisidé:

Påståendet kan bevisas genom att använda potensens definition:

\( a\,^{\color{Red} x} \cdot a\,^{\color{Red} y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} x}\;\times} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} y}\;\times} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{{\color{Red} {x\,+\,y}}\;\times} \; = \; a\,^{{\color{Red} {x\,+\,y}}} \)


Påstående (Andra potenslagen):

\( \displaystyle {a\,^x \over a\,^y} \; = \; a\,^{x \, - \, y} \)


Exempel 3

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare med andra potenslagen:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Påstående (Lagen om nollte potens):

\( a^0 \; = \; 1 \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


Potenser med negativa exponenter

Påstående (Lagen om negativ exponent, \( \, x > 0 \)):

\( a^{-x} = \displaystyle{1 \over a^x} \)

Bevis:

Påståendet kan bevisas genom att använda den ovan bevisade lagen om nollte potensen (baklänges) samt andra potenslagen:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

Vi får påståendet, fast baklänges.


Exempel på potenser med negativa exponenter

\( \displaystyle{a^{-1} \, = \, {1 \over a^1} \, = \, {1 \over a}} \)


\( \displaystyle{a^{-2} \, = \, {1 \over a^2} \, = \, {1 \over a \cdot a}} \)


\( \displaystyle{a^{-3} \, = \, {1 \over a^3} \, = \, {1 \over a \cdot a \cdot a}} \)


Att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter med nollte potensen däremellan illustrerar följande exempel:


Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \;\; {\color{Red} {5^0 \; = \; 1}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \). Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Jämför med:


Varför är \( \; 5 \cdot 0 \, = \, 0 \; \)?

\[ \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 \]
\[ \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 \]
\[ \;\; {\color{Red} {5 \cdot 0 \; = \; 0}} \]
\[ \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 \]
\[ \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 \]
\[ \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 \]
\[ \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 \]

Att \( \; {\color{Red} 0} \)-orna följer med hela tiden beror på att additionens enhet är \( \, {\color{Red} 0} \), dvs \( \, a + {\color{Red} 0} \, = \, a \). Därför blir endast \( \, {\color{Red} 0} \, \) kvar, när vi kommer till \( \, {\color{Red} {5 \cdot 0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Potenser med exponenter som är rationella tal (bråktal) kan användas för att beräkna (högre) rötter.


Påstående (högre rötter):

\( a^{1 \over n} \; = \; \sqrt[n]{a} \; \) \( , \qquad n\neq 0 \)

Bevisidé:

Vi tar specialfallet \( n=3 \), multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Definitionen för 3:e roten ur \( a \) är:

\( \qquad\quad \displaystyle \sqrt[3]{a} \; = \; \) Tal som 3 gånger multiplicerat med sig själv ger \( a \).

Men enligt ovan är det tal som 3 gånger med sig själv ger \( a \), just \( a \) \(^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur \( a \):

\( \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} \)

Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal \( m\, \) och \( n\neq 0 \, \) (Lagen om rationell exponent):

\( a^{m \over n} \; = \; \sqrt[n]{a^m} \)


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen. Potensekvationer löses genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt (med rationell exponent):

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

Det alternativa sättet att lösa ekvationen ovan visar att rötter även kan uppfattas och skrivas som potenser med rationella exponenter.


Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2015 Math Online Sweden AB. All Rights Reserved.