Skillnad mellan versioner av "1.1 Om tal"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 102: | Rad 102: | ||
för att representera alla andra tal. Antagligen har urmänniskan räknat första gången genom att räkna upp sina <math> \, 10 \, </math> fingrar. Det är praktiskt - och vi gör det även idag - att ta sina fingrar till hjälp när man räknar i huvudet. Alla tal större än <math> \, 10 \, </math> bildas med hjälp av dessa siffror <math> \, 0</math>-<math>9 \, </math>. | för att representera alla andra tal. Antagligen har urmänniskan räknat första gången genom att räkna upp sina <math> \, 10 \, </math> fingrar. Det är praktiskt - och vi gör det även idag - att ta sina fingrar till hjälp när man räknar i huvudet. Alla tal större än <math> \, 10 \, </math> bildas med hjälp av dessa siffror <math> \, 0</math>-<math>9 \, </math>. | ||
− | ''Positionssystem'' heter vårt talsystem därför att det är positionen eller placeringen av siffrorna <math> \, 0</math>-<math>9 \, </math> i talet som bestämmer talets <strong><span style="color:red">värde</span></strong>. De olika positioner som bestämmer värdet har följande beteckningar: | + | ''Positionssystem'' heter vårt talsystem därför att det är positionen eller placeringen av siffrorna <math> \, 0</math>-<math>9 \, </math> i talet som bestämmer siffrornas och därmed talets <strong><span style="color:red">värde</span></strong>. De olika positioner som bestämmer värdet har följande beteckningar: |
::::::::* ental | ::::::::* ental |
Versionen från 5 april 2015 kl. 20.42
Genomgång | Övningar | Nästa avsnitt --> |
Innehåll
Talbegreppet
Aritmetik \(-\) vårt första kapitel i Matte \(1\)-kursen \(-\) betyder läran om tal. Men vad är ett tal egentligen? Titta på följande exempel:
Självfallet är tre katter inte lika med tre hundar. Men fundera: Vad är det gemensamma hos tre katter och tre hundar?
Fil:Images tre katter.jpg \(\qquad\) \(\qquad\) Fil:Images tre hundar.jpg \(\qquad\) \(\qquad\)
Om vi bortser från själva katter och hundar så är det antalet tre som är gemensamt för båda mängder. Och just detta gemensamma kallas för talet 3.
Talet \( \, {\color{Red} n} \, \) kan alltså definieras som det enda gemensamma hos mängder som innehåller precis \( \, n \, \) element, dvs antalet saker och ting som finns i en mängd.
Men att definiera tal med antal är ju bara att byta ut ett okänt ord mot ett annat, vilket inte löser problemet, nämligen att förstå talbegreppet. Det är i själva verket tankeprocessen som ligger bakom räknandet av antal, som kan leda oss till talbegreppet.
Att räkna antalet saker och ting i en mängd har vi lärt oss som barn. Hur det gick till har vi antingen glömt eller aldrig brytt oss om. Denna tankeprocess som i regel pågår omedvetet, består i att bortse från skillnader (katter och hundar) och att bibehålla det gemensamma (antalet tre) hos olika verkliga objekt, och kallas:
Abstraktion
abstrahere betyder på latin: att ta bort, att dra av. Man tar bort det som skiljer tre katter från tre hundar och kommer till det som är som gemensamt hos dem: Antalet 3 eller enklare talet 3. Talbegreppet är resultat av abstraktion i den mänskliga hjärnan: Att bortse från det som skiljer och behålla det som är gemensamt. Källan är alla verkliga objekt som omger oss.
Ett växande barn lär sig denna abstraktionsförmåga under sin uppväxt. Mänskligheten har lärt sig den under den historiska utvecklingen. För oss känns det som en självklarhet att skilja mellan antalet saker och ting i en mängd och mängdens andra egenskaper. Men det finns naturfolk som t.ex. betecknar i sitt språk två kvinnor med ett annat ord än två pilar. De använder olika ord för samma antal när antalen används i kombination med olika objekt. Hos dem har antalet saker och ting i en mängd inte löst sig (inte abstraherats) från mängdens andra egenskaper.
Abstraktion är ett grundläggande koncept i allt tänkande, så även i matematiken. Den ger oss inte bara talbegreppet. Man kan t.o.m. säga att hela matematiken består av en rad abstraktioner på olika nivåer.
Matematik är utan tvivel en abstrakt vetenskap, just för att kunna vara generell, dvs för att kunna användas på så många problem som möjligt. Vill man bli duktig på matte är det bäst att träna sin abstraktionsförmåga istället för att klaga på att den är abstrakt. Och hur gör man det? Bl.a. genom att just syssla med matematik!
Olika typer av tal
Allt vi sade ovan är sant åtminstone för den enklaste typen av tal, de positiva heltalen:
dvs antal saker och ting i en mängd, t.ex. fingrarna i våra händer. Generellt är positiva tal alla tal större än \( \, 0 \, \). Till själva nollan kommer man genom att dra av två lika stora positiva tal från varandra, t.ex. \( \, 4 - 4 = 0 \, \). De positiva heltalen bildar tillsammans med \( \, 0 \, \) de s.k. naturliga talen:
Drar man av ett större naturligt tal från ett mindre, t.ex. \( \, 4 - 5 = -1 \, \) kommer man till negativa tal. De naturliga talen bildar tillsammans med de negativa talen de s.k. heltalen:
Delar man två heltal med varandra, t.ex. \( \, 1 / 3 = \displaystyle{1 \over 3} \, \) kommer man till bråktal. Heltalen bildar tillsammans med bråktalen de s.k. rationella talen:
Drar man t.ex. roten ur \( \, 2 \, \) kommer man till ett s.k. irrationellt tal:
Att detta tal är irrationellt beror på att det har oändligt många decimaler utan något upprepande mönster. Därför kan \( \, \sqrt{2} \, \) inte längre skrivas som ett bråktal. Rationella talen bildar tillsammans med de irrationella talen de s.k. reella talen. Löser man t.ex. ekvationen \( x^2 + 1 = 0 \) kommer man till ett s.k. imaginärt tal:
De reella talen bildar tillsammans med de imaginära talen de s.k. komplexa talen. Bilden till höger visar hur de olika taltyperna är delmängder av varandra. Alla typer av tal bygger sin konstruktion på och är resultat av abstraktioner, i princip av samma typ som vi inledningsvis introducerade talbegreppet \(-\) fast på högre nivå. |
\( \qquad \)Fil:Taltypera.jpg |
Vårt talsystem, det decimala positionssystemet
Att tänka sig ett tal eller att räkna upp antalet saker och ting i en mängd, är en sak. Att beteckna tal, meddela det till andra dvs att kommunicera tal så att alla förstår, är en helt annan sak.
Man pratar om representation av tal, dvs att visa eller framställa talet. Det har funnits genom historien en uppsjö av olika sätt att representera tal. Det sätt som idag används i kommunikation bland människor världen över \(-\) vårt talsystem \(-\) är det s.k. decimala positionssystemet.
Decimalt heter vårt talsystem därför att det bygger på basen \( \, 10 \, \) (på latin: deci). Dvs man använder de första \( \, 10 \, \) siffrorna:
för att representera alla andra tal. Antagligen har urmänniskan räknat första gången genom att räkna upp sina \( \, 10 \, \) fingrar. Det är praktiskt - och vi gör det även idag - att ta sina fingrar till hjälp när man räknar i huvudet. Alla tal större än \( \, 10 \, \) bildas med hjälp av dessa siffror \( \, 0\)-\(9 \, \).
Positionssystem heter vårt talsystem därför att det är positionen eller placeringen av siffrorna \( \, 0\)-\(9 \, \) i talet som bestämmer siffrornas och därmed talets värde. De olika positioner som bestämmer värdet har följande beteckningar:
- ental
- tiotal
- hundratal
- tusental
- tiotusental osv.
Man börjar med att från vänster skriva siffran med det högsta värdet. Sedan följer de andra med nedstigande värden.
Så siffran med det minsta värdet, entalet, hamnar sist dvs längst till höger. T.ex.:
Om du har svårigheter att förstå skrivsättet med \( \, 10\)-potenser läs avsnittet om Potenser. Kom speciellt ihåg att enligt potenslagarna \( \, 10^0 \, = \, 1 \, \).
Exempel 1
I talet \( \, 312 \, \) är - om vi börjar från höger - siffran \( \, 2 \, \) pga sin position (placering) ett ental. Nästa siffra från höger, \( \, 1 \, \) är ett tiotal och siffran \( \, 3 \, \) ett hundratal. Eftersom \( \, 3 \, \) är ett hundratal har siffran \( \, 3 \, \) värdet \( \, 3 \cdot 100 \) dvs \( \, 300 \, \). Eftersom \( \, 1 \, \) är ett tiotal har siffran \( \, 1 \, \) värdet \( \, 1 \cdot 10 \, \) dvs \( \, 10 \, \). Analogt har siffran \( \, 2 \, \) värdet \( \, 2 \cdot 1 \, \) dvs \( \, 2 \, \). Summerar man alla siffrors värden beräknas talets värde till:
- \[ {\color{Red} 3} \, \cdot100 + {\color{Red} 1}\cdot10 + {\color{Red} 2}\cdot1 = 300 + 10 + 2 = {\color{Red} {312}} \, \]
Man säger att \( \, 312 \, \) är ett sätt \(-\) det decimala positionssystemets sätt \(-\) att visa (att representera, att framställa) talets värde.
Om man i exemplet ovan istället för \( \, 100 \, \) skriver \( \, 10^2 \, \), vilket betyder \( \, 10 \cdot 10 \, \), och istället för \( \, 10 \, \) skriver \( \, 10^1 \, \), ser man att det bildas en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) multiplicerad med \( \, 10\)-potenser":
- \[ {\color{Red} 3} \, \cdot 10^2 + {\color{Red} 1}\cdot 10^1 + {\color{Red} 2}\cdot 10^0 = 300 + 10 + 2\cdot 1 = {\color{Red} {312}} \, \]
Denna summa är en generell form för representation av tal i det decimala positionssystemet.
Exempel 2
Problem:
- Ange talet \( \, 5\,689 \, \) som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) multiplicerad med \( \, 10\)-potenser".
Lösning:
- \[{\color{Red} {5\,689}}\;=\;{\color{Red} 5}\cdot1000\,+\,{\color{Red} 6}\cdot100\,+\,{\color{Red} 8}\cdot10\,+\,{\color{Red} 9}\cdot1\;=\;{\color{Red} 5}\cdot10^3\,+\,{\color{Red} 6}\cdot10^2\,+\,{\color{Red} 8}\cdot10^1\,+\,{\color{Red} 9}\cdot10^0\]
Exempel 3
Problem:
- Siffrorna i talet \( \, 96\,038 \, \) ska flyttas så att man får ett femsiffrigt tal som ligger så nära \( \, 40\,000 \, \) som möjligt.
Lösning:
- De två siffrorna närmast \( \, 4 \, \) (första siffran i \( \, 40\,000\)) är \( \, 3 \, \) och \( \, 6 \, \).
- Om vi börjar med siffran \( \, 6 \, \) skulle den ge värdet \( \, 60\,000 \, \) som är längre bort från 40 000 än om vi börjar med 3. Detta skulle nämligen ge värdet 30 000 som är närmare \( \, 40\,000 \, \). Därför bestämmer vi oss att stanna under \( \, 40\,000 \, \), då blir den första siffran i det tal vi söker, \( \, 3 \, \). Då får vi \( \, 30\,000 \, \).
- För att komma så nära \( \, 40\,000 \, \) som möjligt tar vi som nästa siffra den största, nämligen \( \, 9 \, \). Då får vi \( \, 39\,000 \, \). Den näst största siffran är \( \, 8 \, \). Då blir det \( \, 39\,800 \, \). Slutligen är bara \( \, 6 \, \) och \( \, 0 \, \) kvar, så att det blir \( \, 39\,860 \, \).
Internetlänkar
http://www.nyteknik.se/popular_teknik/kaianders/article28993.ece
http://www.vaksalaskolan.uppsala.se/webb/matematik-spel.htm
http://www.df.lth.se/~mikaelb/aritm/aritm-sve.html
http://edeye.com.au/learn/arithmetictraining.php
Copyright © 2011-2015 Taifun Alishenas. All Rights Reserved.