Skillnad mellan versioner av "3.5 Extremvärdesproblem"
Taifun (Diskussion | bidrag) m (→Exempel 1 Glasskiva) |
Taifun (Diskussion | bidrag) m (→Exempel 1 Glasskiva) |
||
Rad 45: | Rad 45: | ||
<td>Vi inför ett koordinatsystem och sätter glasskivan i det, så här: | <td>Vi inför ett koordinatsystem och sätter glasskivan i det, så här: | ||
− | + | Triangelns hypotenusa blir del av en rät linje med negativ lutning. | |
Punkten <math> \, (x, y) \, </math> rör sig på denna rät linje. | Punkten <math> \, (x, y) \, </math> rör sig på denna rät linje. | ||
Rad 59: | Rad 59: | ||
Den räta linjens ekvation blir då<span style="color:black">:</span> <math> \quad \displaystyle y \, = \, - \, {2 \over 3}\,x \, + \, 20 </math> | Den räta linjens ekvation blir då<span style="color:black">:</span> <math> \quad \displaystyle y \, = \, - \, {2 \over 3}\,x \, + \, 20 </math> | ||
− | Denna ekvation kan uppfattas som det samband mellan <math> \, y \,</math> och <math> \, x \, </math>. | + | Denna ekvation kan uppfattas som det samband mellan <math> \, {\color{Red} y} \,</math> och <math> \, x \, </math>. |
</td> | </td> | ||
<td>[[Image: Ovn 3_2_10a.jpg]]</td> | <td>[[Image: Ovn 3_2_10a.jpg]]</td> | ||
Rad 65: | Rad 65: | ||
</table> | </table> | ||
− | Vi | + | Vi sätter in sambandet ovan i <math> \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; </math> för att eliminera <math> \, {\color{Red} y} \,</math> och ställa upp ett uttryck för arean som endast beror av <math> \, x </math>: |
::<math> A(x) \, = \, x \cdot y \, = \, x \cdot (-\,{2 \over 3}\,x \, + \, 20) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x </math> | ::<math> A(x) \, = \, x \cdot y \, = \, x \cdot (-\,{2 \over 3}\,x \, + \, 20) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x </math> |
Versionen från 25 januari 2015 kl. 14.43
<-- Förra avsnitt | Teori | Övningar | --> Nästa avsnitt |
Lektion 33 Extremvärdesproblem I
Lektion 34 Extremvärdesproblem II
Innehåll
Exempel 1 Glasskiva
En glasskiva har formen av en rätvinklig triangel med följande mått i cm:
Ur skivan ska en rektangulär glasplatta skäras ut så att glasplattans area \( \, A(x) \, \) blir maximal.
a) Ställ upp arean \( \, A(x) \, \) som en funktion som endast beror av \( \, x \, \).
b) Bestäm \( \, x \, \) så att funktionen \( \, A(x) \, \) antar sitt maximum.
c) Beräkna glasplattans maximala area.
Lösning:
a)
Vi inför beteckningen \( \; {\color{Red} y} \; \) för glasplattans andra sida, så att rektangelns area kan skrivas som:
- \[ A\,(x, {\color{Red} y}) \; = \; x \; \cdot \; {\color{Red} y} \]
Men här är \( \, A\,(x, {\color{Red} y}) \, \) en funktion av två variabler som vi inte kan jobba med. För att skriva om den till en funktion av endast en variabel, nämligen \( \, x \, \), måste vi hitta ett samband mellan \( \, x \, \) och \( \, {\color{Red} y} \, \). Dvs \( \, {\color{Red} y} \, \) måste uttryckas med \( \, x \, \) och på så sätt elimineras.
Detta samband bestäms rektangelns "fria" hörn som är bunden till triangelns hypotenusa. Det hörnet måste ju alltid ligga på hypotenusan.
Vi sätter in sambandet ovan i \( \; A\,(x, {\color{Red} y}) = x \cdot {\color{Red} y} \; \) för att eliminera \( \, {\color{Red} y} \,\) och ställa upp ett uttryck för arean som endast beror av \( \, x \):
- \[ A(x) \, = \, x \cdot y \, = \, x \cdot (-\,{2 \over 3}\,x \, + \, 20) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]