Skillnad mellan versioner av "Ekvationer"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 21: Rad 21:
 
3:e- och högre gradsekvationer är i sin generella form så pass svåra att de inte behandlas i skolan. Däremot ska vi i Matte C-kursen komplettera våra kunskaper om ekvationslösning med bl.a. ekvationer av typ:
 
3:e- och högre gradsekvationer är i sin generella form så pass svåra att de inte behandlas i skolan. Däremot ska vi i Matte C-kursen komplettera våra kunskaper om ekvationslösning med bl.a. ekvationer av typ:
  
<math> \sqrt(x + 2) - 7 = 0 </math>  
+
<math> \sqrt{x + 2} - 7 = x </math>  
  
 
Sådana ekvationer kallas '''rotekvationer''' och vi kommer att lösa dem genom att återföra dem till 2:a gradsekvationer, precis som man återför 2:a gradsekvationer till 1:a gradsekvationer. Här ett exempel på hur man löser rotekvationen ovan:
 
Sådana ekvationer kallas '''rotekvationer''' och vi kommer att lösa dem genom att återföra dem till 2:a gradsekvationer, precis som man återför 2:a gradsekvationer till 1:a gradsekvationer. Här ett exempel på hur man löser rotekvationen ovan:

Versionen från 10 november 2010 kl. 12.15

       Teori          Övningar      


Vilken typ av ekvation?

Ekvationer har vi lärt oss ända från grundskolan till gymnasiet. I Matte A-kursen har vi bl.a. löst ekvationer av typ\[ 4\,x - (3\,x + 2) = -5\,x+12 \]

Sådana ekvationer kallas linjära eller 1:a gradsekvationer eftersom obekanten \( x \) förekommer endast som 1:a gradspotens dvs med exponenten 1. \( x \) är ju samma som \( x^1 \). Obekantens exponent är alltså avgörande för ekvationens typ och även för svårighetsgraden när man vill lösa ekvationen. I Matte B-kursen har vi bl.a. löst ekvationer av typ\[ x^2 + 6\,x - 16 = 0 \]

Sådana ekvationer kallas kvadratiska eller 2:a gradsekvationer eftersom obekanten \( x \) förekommer högst som 2:a gradspotens dvs med exponenten 2, som \( x^2 \).

3:e- och högre gradsekvationer är i sin generella form så pass svåra att de inte behandlas i skolan. Däremot ska vi i Matte C-kursen komplettera våra kunskaper om ekvationslösning med bl.a. ekvationer av typ\[ \sqrt{x + 2} - 7 = x \]

Sådana ekvationer kallas rotekvationer och vi kommer att lösa dem genom att återföra dem till 2:a gradsekvationer, precis som man återför 2:a gradsekvationer till 1:a gradsekvationer. Här ett exempel på hur man löser rotekvationen ovan: